ACL RD-TEC 1.0 Summarization of P01-1068

Paper Title:
MULTI-CLASS COMPOSITE N-GRAM LANGUAGE MODEL FOR SPOKEN LANGUAGE PROCESSING USING MULTIPLE WORD CLUSTERS

Authors: Hirofumi Yamamoto and Shuntaro Isogai and Yoshinori Sagisaka

Other assigned terms:

  • back-off parameter
  • case
  • cluster
  • clusters
  • community
  • conditional word
  • continuous speech
  • data set
  • data sparseness
  • data sparseness problem
  • entropy
  • error rate
  • estimation
  • euclidean distance
  • evaluation data
  • fact
  • french
  • knowledge
  • language database
  • language model
  • language models
  • lexicon
  • measure
  • method
  • model size
  • n-gram
  • n-gram language model
  • n-grams
  • part-of-speech
  • parts-ofspeech
  • perplexity
  • pos information
  • priori
  • probabilities
  • probability
  • process
  • sparse data
  • sparseness problem
  • spoken language
  • statistical language model
  • statistical models
  • target word
  • term
  • text
  • text corpus
  • training
  • training data
  • training set
  • transition probabilities
  • transition probability
  • vocabulary
  • vocabulary size
  • word
  • word classes
  • word connectivity
  • word error rate
  • word pair
  • word sequence
  • word sequences
  • words

Extracted Section Types:


This page last edited on 10 May 2017.

*** ***