Text Mining
Project/Lab

Behrang Q. Zadeh
behrangatoffice@gmail.com

. Lo . Text Mining Project --- Behran%_QasemiZadeh © . .
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Text Classification

Pattern Recognition and Classification

* Detecting patterns and structures is a central theme in text mining.

* We usually start with the hypothesis that certain observable patterns
in text are correlated to a particular task we address in text mining:

Pattern Recognition and Classification

* Detecting patterns and structures is a central theme in text mining.

* We usually start with the hypothesis that certain observable patterns
in text are correlated to a particular task we address in text mining:
* For example, the distributional hypothesis by

Zellig Harris states that word frequencies are
correlated to particular aspects of meaning.

Text Mining Project --- Behrang QasemiZadeh ©

Pattern Recognition and Classification

* Detecting patterns and structures is a central theme in text mining.

* We usually start with the hypothesis that certain observable patterns
in text are correlated to a particular task we address in text mining:

* For example, the distributional hypothesis by
Zellig Harris states that word frequencies are
correlated to particular aspects of meaning.

* But, which aspects of form to associate with
which aspects of meaning, i.e. where to start?

Text Mining Project --- Behrang QasemiZadeh ©

Goal of this session

* How to identify salient features of text data that are important for a
specific task?

* How to construct models of language for an automatic language
processing task?

* What can we learn about language from these models?

* What are the examples of machine learning techniques for these
tasks?

Classification

* Classification is the task of classifying the elements of a given set into
a number of groups based on some criteria:

 Text classification is the task of assigning documents to several groups topic
labels such as news, sport, etc. (groups: news, sport, etc.)

* Deciding whether an email is spam or not (groups: spam and not-spam).

* Deciding whether a given occurrence of the word bank is used to refer to a
river bank, or a financial institution (groups: word senses).

* A classification rule can be seen as a function that assigns each
element of the set to a class/group/label.

Classification

* Binary classification: there are only two groups or class labels.
* Multi-class classification: there are more than two class labels.
* Open-class classification/Clustering: labels are not known in advance.
* Regression: the label variable is a continuous value, e.g. [0-1].
* Sequence classification: a list of inputs are jointly classified.

Classification

* Binary classification: there are only two groups or class labels.
* Multi-class classification: there are more than two class labels.
* Open-class classification/Clustering: labels are not known in advance.
* Regression: the label variable is a continuous value, e.g. [0-1].
* Sequence classification: a list of inputs are jointly classified.

* Anyway, given the data {(x{, 1), ..., (x5, ¥,) } the classification task
can be formalized by a classification function (rule) f(x) = V.

Supervised Classification

* In supervised classification, a training corpora containing the correct
label for each input is available.

Supervised Classification

machine

label
\ learning
extractor

™
feature classifier
EEEEEEE
. extractor ature: model

Text Mining Project --- Behrang QasemiZadeh ©

11

Two Phase of
Training and

Supervised Classification Prediction
(a) Training
label ™ machine
—N learning
feature | 111 algorithm
extractor features

input

(b) Prediction

feature T classifier ¥ bl
extractor features model

input

Supervised Classification

(a) Training
label >

3 feature
—» ([[[[[}—>»
extractor features

machine
learning
algorithm

Unstructured text input

is transformed to a
structured feature set

label

Supervised Classification

(a) Training

label ™ machine

feature Iearr?ing
— » 7111171+ algorithm
extractor features

A learning algorithm l
exploits the feature set and

classifier

their assigned labels to

model

label

learn a classification rule

(classifier)

Supervised Classification

(a) Training An input first will be
converted to a feature
set using the same
feature extraction
input procedure

(b) Prediction

—» | | 1]]]

a feature
extractor

input

features

label

classifier
model

Supervised Classification

(a) Training

label

" The classification

N .
feature o 1] rule/classifier/model
extractor features is used to guess the

input
P label

(b) Prediction

TN o
| feature T classifier N bel
extractor features model

input

Classification of Classification Techniques

e Based on criteria such as the employed formalism for encoding the
feature set and the approach for the representation of the
classification rule, we can identify several classification techniques:

e Based on probability theory, e.g. using mathematical tools of Bayes' theorem:
* Naive Bayes Classifier

* Based on information theory, e.g. using concepts such as mutual information:
* Maximum Entropy Classifier

* Based on vector spaces, e.g. using concepts such as distance and similarity:
* K-Nearest Neighbour Classification

* Etc.

Classification of Classification Techniques

* In all these methods however you can identify some patterns:
* There exists a classification rule or a classifier
* There exists a performance measure for the classifier

* The learning procedure is often modelled by a loss function or a cost function:
* Learning as an optimization problem.

* Our discussion is not intended to be comprehensive, but to give a
representative sample of tasks that can be performed with the help of
text classifiers.

Name Gender Identification

* Can we guess the gender of a person from his/her name?

* As examined earlier, English names ending in g, e and i are likely to be female,
while names ending in k, o, r, s and t are likely to be male.

* Lets build a classifier to model this problem.

Name Gender Identification

 Step 1: decide what features of the input are important, and how to
encode those features.

Name Gender Identification

 Step 1: decide what features of the input are important, and how to
encode those features.

* Let’s start by looking at the final letter of a given name.

Name Gender Identification

 Step 1: decide what features of the input are important, and how to
encode those features.

* Let’s start by looking at the final letter of a given name.

>>> def gender fTeatures(word):
return {"last letter": word[-1]}

Text Mining Project --- Behrang QasemiZadeh ©

22

Name Gender Identification

 Step 1: decide what features of the input are important, and how to

encode those features.
* Let’s start by looking at the final letter of a given name.

>>> def gender fTeatures(word):

return {"last letter": word[-1]}
>>> gender_features("megamind®)
{"last _letter": “d"}

Text Mining Project --- Behrang QasemiZadeh ©

23

Name Gender Identification

 Step 1: decide what features of the input are important, and how to

encode those features.
* Let’s start by looking at the final letter of a given name.

>>> def gender fTeatures(word):

return {"last letter": word[-1]}
>>> gender_features("megamind®)
{"last _letter": “d"}

Text Mining Project --- Behrang QasemiZadeh ©

24

Name Gender Identification

 Step 1: decide what features of the input are important, and how to
encode those features.
* Let’s start by looking at the final letter of a given name.

>>> def gender fTeatures(word):
return {"last letter": word[-1]} The feature set

>>> gender_features("megamind") is represented by
{"last_letter": “d"} a dictionary!

Name Gender Identification

 Step 1: decide what features of the input are important, and how to
encode those features.
* Let’s start by looking at the final letter of a given name.

>>> def gender fTeatures(word):
return {"last letter": word[-1]}
>>> gender_features("med ki

{"last_letter®: “d"} Feature names are the keys
of the dictionary and usually

are shortened!

Name Gender Identification

 Step 1: decide what features of the input are important, and how to
encode those features.
* Let’s start by looking at the final letter of a given name.

>>> def gender fTeatures(word):
return {"last letter": word[-

>>> gender_features("megamind®)
{*last letter : <d-} The feature values are

often simple values e.g.

a number, Boolean or
string value

Name Gender Identification

 Step 1: decide what features of the input are important, and how to
encode those features.
* Let’s start by looking at the final letter of a given name.

>>> def gender_featuresuord)- This is simply a

return {"last letter®": word[- :
>>> gender_features(“megamind®) eature extractor

{"last _letter": “d"}

Name Gender Identification

 Step 2: prepare a list of examples and corresponding class labels
* For this example, let’s use the names dictionary in NTLK.

Name Gender Identification

 Step 2: prepare a list of examples and corresponding class labels
* For this example, let’s use the names dictionary in NTLK.

>>> from nltk.corpus import names

>>> pmport random

>>> names = ([(name, "male®) fTor name in names.words("male.txt")] +
[(hame, “"female®) for name in names.words("female.txt")])

>>> random.shuffle(names)

>>> featuresets = [(gender_features(n), g) for (n,g) in names]

>>> train_set, test set = featuresets[500:], featuresets[:500]

Text Mining Project --- Behrang QasemiZadeh © 30

Name Gender Identification

 Step 2: prepare a list of examples and corresponding class labels

>>>
>>>
>>>

>>>
>>>
>>>

* For this example, let’s use the names dictionary in NTLK.

from nltk.corpus import names

import random

names = ([(name, "male®) fTor name in names.words("male.txt")] +
[(hame, “"female®) for name in names.words("female.txt")])

random.shuffle(names)

featuresets = [(gender_features(n), g) for (n,g) In names

train_set, test _set = featuresets[500:], featu :

Pre-process text and
create randomly

generated test and
train data

Name Gender Identification

 Step 3: build a classifier from the feature set.
* For this example, we skip a few details and directly use naive Bayes classifer.

>>> classiftier = nltk.NaiveBayesClassifTier.train(train_set)

Name Gender Identification

 Step 3: build a classifier from the feature set.
* For this example, we skip a few details and directly use naive Bayes classifer.

>>> classiftier = nltk.NaiveBayesClassifTier.train(train_set)

Do what is needed to

be done and develop
a classifier!

Name Gender Identification

 Step 3: build a classifier from the feature set.
* For this example, we skip a few details and directly use naive Bayes classifer.

>>> classiftier = nltk.NaiveBayesClassifTier.train(train_set)
>>> classifier.classify(gender_features("Brian®))

"male”
>>> classifier.classify(gender_features(“Kathy®))

"female”

Name Gender Identification

 Step 3: build a classifier from the feature set.
* For this example, we skip a few details and directly use naive Bayes classifer.

>>> classiftier = nltk.NaiveBayesClassifTier.train(train_set)

Name Gender Identification

* Step 4: evaluate the classifier in a systematic way on a larger quantity
of unseen data:

* In this example, use the test_set.

Name Gender Identification

* Step 4: evaluate the classifier in a systematic way on a larger quantity
of unseen data:

* In this example, use the test_set.

>>> print nltk.classify.accuracy(classifier, test _set)
0.774

Name Gender Identification

* Also, you can have a look at the most informative/discriminative
features:

>>> classifier.show _most informative features(5)
Most Informative Features

last letter = "a" female : male = 34.5 - 1.0
last letter = "k" male : female = 29.7 - 1.0
last letter = "f" male : female = 26.5 - 1.0
last letter = "v® male : female = 10.5 - 1.0
last letter = "p" male : female = 10.5 - 1.0

Text Mining Project --- Behrang QasemiZadeh ©

Name Gender Identification

* Also, you can have a look at the most informative/discriminative
features:

Names in the training
set that end in "a" are
34.5 times more likely to

be female than male.

>>> classifier.show _most informative features(5)
Most Informative Features

last letter "a" female : male
last letter "k* male : female
last letter " male : female
last_letter "v®" male : female
last_letter

p® male : female

o
o
ol
PR RRPR
coooo

Name Gender Identification

* Also, you can have a look at the most informative/discriminative
features:

>>> classifier.show _most informative features(5)
Most Informative Features

last_letter = "a" female - male = 34.5 : 1.0 _

last_letter = "k" male : female = 29.7 : 1.0 But, names that end in
last_letter = "f" male : female = 26.5 : 1.0 ”K7”e297t”“ﬂ”“m?
last _letter = "v® male : female = 10.5 : 1.0 likely to be male than

last_letter = "p" male : female = 10.5 : 1.0 female.

Excersise

* Modify the gender_ features() function in order to add several
other features such as length of names, the first letter, etc.

e Use the function nltk.classify.apply features to avoid storing very
large list of features:

>>> from nltk.classifty import apply_features
>>> train_set = apply features(gender_ features, names[500:])
>>> test set = apply features(gender_ features, names|[:500])

Excersise

* Modify the gender_feature
other features such as len Use the LazyMap class to construct
8 a lazy list-like object that is

e Use the function nltk.cla analogous to
large list of features: map(feature func, toks).

>>> from nltk.classifty import apply_features
>>> train_set = apply features(gender_ features, names[500:])
>>> test set = apply features(gender_ features, names|[:500])

Choosing The Right Features

 Selecting relevant features and their proper representation is one of
the most important task in the development of a classifier.

* Feature Selection is thus a common term in machine learning.

Choosing The Right Features

 Selecting relevant features and their proper representation is one of
the most important task in the development of a classifier.

* Feature Selection is thus a common term in machine learning.

* Typically, feature extractors are built through a trial-and-error process,
guided by some intuition of what can be important.

Choosing The Right Features

Of course there are some

* Selecting relevant features and thei reports/publications/experi
the most important task in the devel8 ments that can help!

e Feature Selection is thus a common term in mae

* Typically, feature extractors are built through a trial-and
guided by some intuition of what can be important.

-error process,

Choosing The Right Features

 Selecting relevant features and their proper representation is one of
the most important task in the development of a classifier.

* Feature Selection is thus a common term in machine learning.

* Typically, feature extractors are built through a trial-and-error process,
guided by some intuition of what can be important.

* It is common to start with a greedy "kitchen sink" approach:
* First, Generate all the features that you can think of;
* Then, check and see which one is actually useful/discriminative

Choosing The Right Features

* It is common to start with a greedy "kitchen sink" approach:
* First, Generate all the features that you can think of;
* Then, check and see which one is actually useful/discriminative

def gender featuresZ2(name):
features = {}
features[''firstletter'™] = name[0].lower()
Tfeatures["lastletter’™] = name[-1]-lower()
for letter i1In "abcdefghijklImnopgrstuvwxyz”:
features[''count(%s)'™ % letter] = name.lower().count(letter)

Tfeatures["has(%s)" % letter] = (letter i1n name.lower())
return features

Text Mining Project --- Behrang QasemiZadeh © 47

Choosing The Right Features

* It is common to start with a greedy "kitchen sink" approach:
* First, Generate all the features that you can think of;

def gender featuresZ2(name):
features = {}
features[''firstletter'™] = name[0].lower()
Tfeatures["lastletter’™] = name[-1]-lower()
for letter i1In "abcdefghijklImnopgrstuvwxyz”:
features["'count(%s)™ % letter] = name.lowe
Tfeatures["has(%s)" % letter] = (let¥
return features

Overfitting

Problem!

Choosing The Right Features

* The greedy method of generating a lot of features, however, comes
with certain limitations:

* Overfitting Problem:

* The larger the number of features, the higher the chance of relying on idiosyncrasies of
training data, specially when the size of training data is small.

* In this case, the generated classifier don't generalize well to new examples.

Choosing The Right Features

* The greedy method of generating a lot of features, however, comes
with certain limitations:

* Overfitting Problem:

* The larger the number of features, the higher the chance of relying on idiosyncrasies of
training data, specially when the size of training data is small.

* In this case, the generated classifier don't generalize well to new examples.

>>> featuresets = [(gender_ features2(n), g) for (n,g) in names]
>>> train_set, test set = featuresets[500:], featuresets[:500]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)

>>> print nltk.classify.accuracy(classifier, test set)

0.764

Choosing The Right Features

* The greedy method of generating a lot of features, however, comes
with certain limitations:

* Overfitting Problem:

* The larger the number of fegs _
training data, specially w Using the new feature set,

osyncrasies of

* Inthis case, the genera compared to the earlier
>>> featuresets = =] |
=~ train set, tes result of 0.774, the 1
>>> classifier g performance has dropped

>>> print g

0.764 by almost 1%!

Choosing The Right Features

* The greedy method of generating a lot of features, however, comes
with certain limitations:

* Overfitting Problem:

* The larger the number of features, the higher the chance of relying on idiosyncrasies of
training data, specially when the size of training data is small.

* In this case, the generated classifier don't generalize well to new examples.

>>> featuresets = [(gender_ features2(n), g) for (n,g) in names]
>>> train_set, test set = featuresets[500:], featuresets[:500]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)

>>> print nltk.classify.accuracy(classifier, test set)

0.764

* So, we need to limit the number of features.

Choosing The Right Features

* One effective method for refining the feature set is error analysis.

* First, we select a development training set, containing the corpus data for
creating the model.

* This development set is then subdivided into two subsets: the training set and
the development-test set.

Choosing The Right Features

* One effective method for refining the feature set is error analysis.
* First, we select a development training set, containing the corpus data for
creating the model.

* This development set is then subdivided into two subsets: the training set and
the development-test set.

Corpus

‘Development Set
>>> train_names = names[1500:] (Training Set | [Dev-TestSet | | [Test Set
>>> devtest_names = names[500:1500]
>>> test_names = names[:500]

Text Mining Project --- Behrang QasemiZadeh © 54

Choosing The Right Features

alysis.
Jata for

* One effective method for refining Use the training

* First, we select a development traini setto de.V_EIOp d
creating the model. classifier

* This development set is then subdivided |
the development-test set.

S training set and

Corpus
.
>>> train_names = names[1500:] (" Training Set | [Dev-TestSet | | [Test Set
>>> devtest_names = names[500:1500]
>>> test_names = names[:500]
L g N v, .
_ v,

Choosing The Right Features

Use the Dev-Test
set to do the
error analysis.

* One effective method for refining the feature
* First, we select a development training set, conta
creating the model.

* This development set is then subdivided into two subse
the development-test set.

-

(Development Set

>>> train_names = names[1500:] (" Training Set | [Dev-TestSet | | [Test Set
>>> devtest_names = names[500:1500]
>>> test_names = names[:500]

Choosing The Right Features

» One effective method for refining the feature set is errogUCIVAIECRUL

* First, we select a development training set, containing the co test set to do
creating the model. the evaluation

* This development set is then subdivided into two subsets: the trai
the development-test set.

-

Corpus

(Development Set
>>> train_names = names[1500:] (" Training Set | [Dev-TestSet | | [Test Set
>>> devtest_names = names[500:1500]
>>> test_names = names[:500]

Choosing The Right Features

>>> train_set = [(gender_features(n), g) for (n,g) in train_names]
>>> devtest_set = [(gender_ features(n), g) for (n,g) in devtest names]
>>> test set = [(gender_features(n), g) for (n,g) in test names]

Perform feature

extractions on these
sets

Choosing The Right Features

>>> train_set = [(gender_features(n), g) for (n,g) in train_names]

>>> devtest_set = [(gender_ features(n), g) for (n,g) in devtest names]
>>> test set = [(gender_features(n), g) for (n,g) in test names]

>>> classifier = nltk.NaiveBayesClassifier.train(train_set)

Develop the

classifier

Choosing The Right Features

>>> train_set = [(gender_features(n), g) for (n,g) in train_names]

>>> devtest_set = [(gender_ features(n), g) for (n,g) in devtest names]
>>> test set = [(gender_features(n), g) for (n,g) in test names]

>>> classifier = nltk.NaiveBayesClassifTier.train(train_set)

>>> print nltk.classify.accuracy(classifier, devtest set)
0.755

Evaluate it on the

devtest set

Choosing The Right Features

. First, make an
e Use the devtest_set toinspect errors! ’

inventory of
difficult entries.

>>> errors = []
>>> for (name, tag) in devtest names:
guess = classifier.classify(gender_ features(name))
1T guess != tag:
errors.append((tag, guess, name))

Choosing The Right Features

Now, manually
inspect errors and

e Use the devtest_set toinspect errors!
see if you recon any

patterns!

>>> for (tag, guess, name) in sorted(errors):
print "correct=%-8s guess=%-8s name=%-30s" % (tag, guess, name)

correct=female guess=male name=Cindelyn
correct=female guess=male name=Katheryn
correct=female guess=male name=Kathryn

Choosing The Right Features

Now, manually
inspect errors and

e Use the devtest_set toinspect errors!
see if you recon any

patterns!

>>> for (tag, guess, name) in sorted(errors):
print "correct=%-8s guess=%-8s name=%-30s" % (tag, guess, name)

correct=female guess=male name=Cinde
correct=female guess=male name=Kathe
correct=female guess=male name=Kath

Choosing The Right Features

* Use the devtest_set toinspect errors!

>>> for (tag, guess, name) in sorted(errors):
print "correct=%-8s guess=%-8s name=%-30s" % (tag, guess, name)

correctffemale gueSSfmale namefC|nde adjustfeature
correct=female guess=male name=Kathe _
correct=female guess=male name=Kath extractor to include

features for two-
letter suffixes

Choosing The Right Features

e Use the devtest set toinspect errors!

* Amend the feature extraction process!

Choosing The Right Features

e Use the devtest set toinspect errors!

* Amend the feature extraction process!

>>> def gender_ features(word):

return {"suffixl”: word[-1:], "“suffix2":

Text Mining Project --- Behrang QasemiZadeh ©

word[-2:]}

66

Choosing The Right Features

e Use the devtest set toinspect errors!
* Amend the feature extraction process!
* Develop a new model and test the new feature set!

Choosing The Right Features

e Use the devtest set toinspect errors!
* Amend the feature extraction process!
* Develop a new model and test the new feature set!

>>> train_set = [(gender_features(n), g) for (n,g) in train_names]

>>> devtest _set = [(gender_features(n), g) for (n,g) in devtest names]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)

>>> print nltk.classify.accuracy(classifier, devtest set)

0.782

Choosing The Right Features

e Use the devtest set toinspect errors!

* Amend the feature extraction process!

* Develop a new model and test the new feature set!
* Repeat the steps listed above!

Choosing The Right Features

e Use the devtest set toinspect errors!
* Amend the feature extraction process!
* Develop a new model and test the new feature set!

* Repeat the steps listed above!

* Important note: each time the error analysis procedure is
repeated, select a different dev-test/training data to avoid
over-fitting!

Choosing The Right Features

e Use the devtest set toinspect errors!
* Amend the feature extraction process!
* Develop a new model and test the new feature set!

* Repeat the steps listed above!

* Important note: each time the error analysis procedure is
repeated, select a different dev-test/training data to avoid
over-fitting!

* Test your model on the test set, once you are done with the
development procedure.

Document Classification

* We can use corpora of documents that are labelled with categories to
develop a document classifier.

* The classifiers then can be used to automatically tag new documents
with appropriate category labels.

Document Classification

* We can use corpora of documents that are labelled with categories to
develop a document classifier.

* The classifiers then can be used to automatically tag new documents
with appropriate category labels.

* The procedure is similar to the previous example:
* First, construct a list of documents, labelled with the appropriate categories.
* Second, define a feature extractor for documents.
* Third, apply feature extraction and develop a classifier.

Document Classification

Use movie_reviews
dataset (each review

 Step 1: prepare list of labelled documents is labelled either as
positive or negative)

>>> from nltk.corpus import movie _reviews
>>> documents = [(list(movie reviews.words(fileid)), category)

Tfor category in movie reviews.categories()
Tfor fileid in movie _reviews.fTileids(category)]

>>> random.shuffle(documents)

Document Classification Use the bag-of-words
hypothesis (only 2000

most frequent words)

 Step 2: define features

>>> all _words = nltk.FregDist(w.lower() for w in movie_reviews.words())
>>> word_ features = all _words.keys()[:2000]

>>> def document features(document):
document _words = set(document)
features = {}
for word in word features:
features[“contains(%s)® % word] = (word in document words)
return features

Document Classification Use the bag-of-words
hypothesis (only 2000

most frequent words)

 Step 3: develop a classifier

>>> featuresets = [(document features(d), c) for (d,c) in documents]
>>> train_set, test set = featuresets[100:], featuresets[:100]
>>> classifier = nltk.NaiveBayesClassifTier.train(train_set)

Document Classification Use the bag-of-words
hypothesis (only 2000

most frequent words)

 Step 3: develop a classifier

>>> featuresets = [(document features(d), c) for (d,c) in documents]
>>> train_set, test set = featuresets[100:], featuresets[:100]
>>> classifier = nltk.NaiveBayesClassifTier.train(train_set)

>>> print nltk.classify.accuracy(classifier, test _set)
0.81
>>> Jassifier.show _most_informative features(5)
Most Informative Features
contains(outstanding) = True pos - neg = 11.1
contains(seagal) = True neg - pos = 7.7 - 1.0
contains(wonderfully) = True pos - neg = 6.8 ©: 1.0

Exercise

* Enhance the document classification by enhancing the feature
extraction process, e.g. get rid of stop words!

Part-of-Speech Tagging using Decision trees

* Instead of handcrafted regular expressions for part-of-speech tagging
(remember from last session?!), lets use a decision tree!

* Exact same procedure:
* Prepare data;
* Define features;
* Develop the model.

Part-of-Speech Tagging using Decision trees

* Instead of handcrafted regular expressions for part-of-speech tagging
(remember from last session?!), lets use a decision tree!

e Exact same procedure:
* Prepare data;
* Define features;
* Develop the model.
* Features here are suffixes that appear at the end of words.

Part-of-Speech Tagging using Decision trees

>>> from nltk.corpus import brown

>>> suffix_fdist = nltk.FregDist() Let’s find the top

>>> for word in brown.words(): 100 common
word = word.lower() suffixes!
suffix_fdist[word[-1:]]+=1
suffix_fdist[word[-2:]]+=1
suffix_fdist[word[-3:]]+=1

>>> common_suffixes = [seq[0] for seq

in suffix _fdist. most _common(n=100)]

Part-of-Speech Tagging using Decision trees

>>> from nltk.corpus import brown
>>> suffix_fdist = nltk.FregDist()
>>> for word in brown.words():
word = word.lower()
suffix_fdist[word[-1:]]+=1
suffix_fdist[word[-2:]]+=1
suffix_fdist[word[-3:]]+=1
>>> common_suffixes = [seq[0] for seq
in suffix _fdist. most _common(n=100)]
>>> print common_suffixes

[.e" .1., .'., 'S.1 .d.1 .t.1 .he.1 .n.7 .a‘.7"']

Text Mining Project --- Behrang QasemiZadeh ©

Part-of-Speech Tagging using Decision trees

* A feature extraction function using the extracted suffixes:

>>> def pos features(word):
features = {}
for suffix in common_suffixes:
features[“endswith(%s) " %suffix] =\
word. lower() .endswith(suffix)
return features

Text Mining Project --- Behrang QasemiZadeh ©

83

Part-of-Speech Tagging using Decision trees

* Now, apply the feature extraction and build a classifier

>>> tagged words = brown.tagged words(categories="news")
>>> featuresets = [(pos_features(n), g) for (n,g) in tagged words]

Part-of-Speech Tagging using Decision trees

* Now, apply the feature extraction and build a classifier

>>> tagged words = brown.tagged words(categories="news")
>>> featuresets = [(pos_features(n), g) for (n,g) in tagged words]

>>> size = int(len(featuresets) * 0.1)
>>> train_set, test set = featuresets|[size:], featuresets|[:size]

Part-of-Speech Tagging using Decision trees

* Now, apply the feature extraction and build a classifier

>>> tagged words = brown.tagged words(categories="news")
>>> featuresets = [(pos_features(n), g) for (n,g) in tagged words]

>>> size = int(len(featuresets) * 0.1)
>>> train_set, test set = featuresets|[size:], featuresets|[:size]

>>> classiftier = nltk.DecisionTreeClassifier.train(train_set)
>>> nltk.classify.accuracy(classifier, test set)
0. 6270512182993535

Sequence Classification

* Some of the classification tasks are related to each other, i.e. to solve
a problem we have to make a chain of decisions:

» e.g. for Part-of-Speech tagging, choosing a PoS tag for each word will affect
the decision for choosing the next one!

Sequence Classification

* Some of the classification tasks are related to each other, i.e. to solve
a problem we have to make a chain of decisions:

» e.g. for Part-of-Speech tagging, choosing a PoS tag for each word will affect
the decision for choosing the next one!

* A vibrant research community works on this problem:
* Markov Chain and the Hidden Markov Model (HMM)
* Maximum Entropy Markov Model (MEMM)
* Conditional Random Field
* etc.

Sequence Classification

* Some of the classification tasks are related to gach other, i.e.

a problem we have to.make a chain of decisi

 e.g. for Part-of-Speech hoosing a PoS
the decision for choosiny -

e A vibrant research comm Check out

_ Linguistic Structure Prediction
* Conditional R3 by Noah Smith!

* etc.

Sequence Classification

* One strategy for sequence labelling is to find the most likely class
label for the first input, then to use that answer to help find the best
label for the next input.

* Repeat the process until all of the inputs have been labelled
e Similar to n-gram tagging from Chapter 5, if you remember?!
* Sounds like dynamic programming!

Sequence Classification

* One strategy for sequence labelling is to find the most likely class
label for the first input, then to use that answer to help find the best
label for the next input.

* Repeat the process until all of the inputs have been labelled
e Similar to n-gram tagging from Chapter 5, if you remember?!
* Sounds like dynamic programming!

* One of the main differences here is the implementation of feature
extraction:

* We must enable our feature extractor to take a history argument.

Sequence Classification

* One strategy for sequence labelling is to find the most likely class
label for the first input, then to use that answer to help find the best
label for the next input.

* Repeat the process until all of the inputs have been labelled
e Similar to n-gram tagging from Chapter 5, if you remember?!
* Sounds like dynamic programming!

* One of the main differences here is the implementation of feature
extraction:

* We must enable our feature extractor to take a history argument.

Sequence Classification

def pos features(sentence, 1, history):
features = {"suffix(1l)": sentencel[i1]][-1:],
"suffix(2)'": sentencel[i][-2:],
"suffix(3)": sentence[i1][-3:]}
it 1 ==
features[''prev-word"™] "<START>*
features[''prev-tag'”] = "<START>"
else:
features[''prev-word™] = sentence[i1-1]
features|[''prev-tag'] = history[i-1]
return features

Text Mining Project --- Behrang QasemiZadeh ©

93

Sequence Classification

def pos features(sentence, 1, history):
features = {"suffix(1l)": sentencel[i1]][-1:],
"suffix(2)": sentence[i][-2:],
“suffix(3)": sentence[i][-3:]} remember a
=0 few things
features|[''prev-word"] = "<START>*
features|''prev-tag''] = "<START>"

| can

else:
features|[''prev-word'"] = sentencel[i-1]
features[''prev-tag”] = history[i-1]
return features

Sequence Classification

class ConsecutivePosTagger(nltk.Taggerl):
def init (self, train_sents):

train_set = []

for tagged sent in train_sents:
untagged _sent = nltk.tag.untag(tagged sent)

history = []

for 1, (word, tag) in enumerate(tagged sent):
featureset = pos fTeatures(untagged sent, i1, history)
train_set.append((featureset, tag))
history.append(tag)

self.classifier = nltk.NaiveBayesClassifier.train(train_set)

def tag(self, sentence):
history = []
for 1, word in enumerate(sentence):
featureset = pos_features(sentence, 1, history)
tag = self.classifier.classifty(featureset)
history.append(tag) return zip(sentence, history)

Text Mining Project --- Behrang QasemiZadeh © 95

Se lence Classification

class ConsecutivePosTagger(nltk.Taggerl):
def _init_ (self, train_sents):

train_set = []

for tagged sent in train_sents:
untagged sent = nltk.tag.untag(tagged sent)

history = []

for 1, (word, tag) in enumerate(tagged sent):
featureset = pos_features(untagged sent, i1, history)
train_set.append((featureset, tag))
history.append(tag)

self.classiftier = nltk.NaiveBayesClassifier.train(train_set)

def tag(self, sentence):
history = []
for 1, word in enumerate(sentence):
featureset = pos features(sentence, i1, history)
tag = self.classifier.classify(featureset)
history.append(tag) return zip(sentence, history)

Sequence Classification

class ConsecutivePosTagger(nltk.Taggerl):
def _init_ (self, train_sents):

train_set = []

for tagged sent in train_sents:
untagged sent = nltk.tag.untag(tagged sent)

history = []

for 1, (word, tag) in enumerate(tagged sent):
featureset = pos_features(untagged sent, i1, history)
train_set.append((featureset, tag))
history.append(tag)

self.classiftier = nltk.NaiveBayesClassifier.train(train_set)

def tag(self, sentence):
history = []
for 1, word in enumerate(sentence):
featureset = pos features(sentence, i1, history)
tag = self.classifier.classify(featureset)
history.append(tag) return zip(sentence, history)

Sequence Classification

>>> tagged sents = brown.tagged sents(categories="news")
>>> size = int(len(tagged sents) * 0.1)
>>> trailn_sents, test sents = \

tagged _sents|[size:], tagged sents[:size]

Sequence Classification

>>>
>>>
>>>

>>>

tagged sents = brown.tagged sents(categories="news”")
size = Int(len(tagged sents) * 0.1)
train_sents, test sents = \

tagged _sents|[size:], tagged sents[:size]
tagger = ConsecutivePosTagger(train_sents)

Sequence Classification

>>>
>>>
>>>

>>>
>>>

tagged sents = b: yged sents(categories="news")
size = Int(len(ta . s . nts) * 0.1)
train_sents, test sei s = \

tagged_sents[ize:], tagged_sents[:size]
tagger = ConsecutivePosTagger(train_sents)
print(tagger.evaluate(test _sents))

0.79796012981

Other examples

* The NLTK book comes with several interesting examples; each
example targets a specific concept:
* Sentence Segmentation
* Identifying Dialogue Act Types
* Recognizing Textual Entailment

Scaling Up to Large Datasets

* “Python provides an excellent environment for performing basic text
processing and feature extraction. However, it is not able to perform
the numerically intensive calculations required by machine learning
methods nearly as quickly as lower-level languages such as C.”

Scaling Up to Large Datasets

* “Python provides an excellent environment for performing basic text
processing and feature extraction. However, it is not able to perform
the numerically intensive calculations required by machine learning
methods nearly as quickly as lower-level languages such as C.”

* “Thus, if you attempt to use the pure-Python machine learning
implementations (such as nltk.NaiveBayesClassifier) on large datasets,
you may find that the learning algorithm takes an unreasonable
amount of time and memory to complete.”

Scaling Up to Large Datasets

Phasic text
olaan

* “Python provides a forgad
processing and feat
the numericallintag :

methods % However, don’t blame o
e “Thus, if you gt Python on your errors in

imple Programming! oe datasets,
you may fine e
amount of

ollent e

Scaling Up to Large Datasets

*Please double check programming patterns
in Chapter 4:
* Functions as Arguments
* Accumulative Functions
* Higher-Order Functions!

We continue with classification and
learning techniques next session!

* Before we finish:

* Do you know about FLASK?
e http://flask.pocoo.org/

* What do you think of FLASK + jquery?
* Do you have any suggestion other than FLASK?!

Text Mining Project --- Behrang QasemiZadeh © 107

