@00

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Dictionaries in Python

Behrang QasemiZadeh
me@atmykitchen.info

Text Mining Project --- Behrang QasemiZadeh ©

Dictionaries in Python

* Dictionary data type can be seen as a tool for mapping between
arbitrary data types:
* Alook up tool (best exemplified by conventional dictionaries).

Dictionaries in Python

* Dictionary data type can be seen as a tool for mapping between
arbitrary data types:
* A look up tool (best exemplified by conventional dictionaries).

>>> pos = {}
>>> pos

{3

>>> pos[“colorless®™] = "ADJ*
>>> pos

{"colorless®": "ADJ"}
>>> pos[“colorless™]
*ADJ"

Dictionaries in Python

* Dictionary data type can be seen as a tool for mapping between
arbitrary data types:
* A look up tool (best exemplified by conventional dictionaries).

Define an empty

>>> pos = {} dictionary
>>> pos

5

>>> pos[“colorless®™] = "ADJ"

>>> pos

{"colorless®": "ADJ"}
>>> pos[“colorless™]
*ADJ"

Dictionaries in Python

* Dictionary data type can be seen as a tool for mapping between
arbitrary data types:
* A look up tool (best exemplified by conventional dictionaries).

>>> pos = {}
>>> pos

O .

>>> pos[“colorless®"] = "ADJ" Assign to the key
>>> poS “colorless” the value
{"colorless™: "ADJ"} of “ADJ”

>>> pos[“colorless™]
*ADJ"

Dictionaries in Python

* Dictionary data type can be seen as a tool for mapping between
arbitrary data types:
* A look up tool (best exemplified by conventional dictionaries).

>>> pos = {}
>>> pos

{}

>>> pos[“colorless®™] = "ADJ"

=>>> POsS Retrieve the
{"colorless™: "ADJ"} assigned value to
>>> pos[“colorless™] the key “colorless”

"ADJ"

Dictionaries in Python

* Dictionary data type can be seen as a tool for mapping between
arbitrary data types:

* A look up tool (best exemplified by conventional dictionaries).

>>> pos = {}

>>> pos

{3

>>> pos[“colorless®™] = "ADJ*
>>> posS

{"colorless®": "ADJ"}
>>> pos[“colorless™]
"ADJ"

>>> pos[green”]

Text Mining Project --- Behrang QasemiZadeh ©

Dictionaries in Python

* Dictionary data type can be seen as a tool for mapping between
arbitrary data types:
* A look up tool (best exemplified by conventional dictionaries).

>>> pos = {}

>>> pPOoS

0 P Traceback (most recent call last):
>>> pos[“colorless®] = "ADJ" File "<stdin>", line 1, 1In ?
>>> Pos KeyError: "green”

{"colorless®": "ADJ"}
>>> pos[“colorless™]
"ADJ"

>>> pos[green”]

Text Mining Project --- Behrang QasemiZadeh ©

Dictionaries in Python

* Dictionary data type can be seen as a tool for mapping between
arbitrary data types:
* A look up tool (best exemplified by conventional dictionaries).
* Dictionaries are not sequences, thus the keys are not inherently ordered.

Dictionaries in Python

* Dictionary data type can be seen as a tool for mapping between
arbitrary data types:

* A look up tool (best exemplified by conventional dictionaries).
* Dictionaries are not sequences, thus the keys are not inherently ordered.

>>> list(pos)

["1deas”, "furiously®, "colorless”,
>>> sorted(pos)

["colorless™, "furiously”", "ideas”, "sleep”]
>>> [w for w in pos 1If w.endswith("s")]
["colorless™, "ideas”]

"sleep”]

Dictionaries in Python

* Dictionary data type can be seen as a tool for mapping between
arbitrary data types:

* A look up tool (best exemplified by conventional dictionaries).
* Dictionaries are not sequences, thus the keys are not inherently ordered.

>>> li1st(pos) :
. - 0w - . ow To find the keys, we
["1deas”, "furiously”, _
d can convert a
>>> sorted(pos)) } dictionary to a list
["colorless™, "furiously”", "ideas”, "sleep”]

>>> [w for w in pos if w.endswith("s")]
["colorless™, "ideas”]

Dictionaries in Python

* Dictionary data type can be seen as a tool for mapping between
arbitrary data types:

* A look up tool (best exemplified by conventional dictionaries).
* Dictionaries are not sequences, thus the keys are not inherently ordered.

>>> list(pos)

["1deas”, "furiously®, "colorless”,
>>> sorted(pos)
["colorless™, "furiously”", "ideas”, "sleep”]
>>> [w for w in pos 1If w.endswith("s")]
["colorless™, "ideas”]

s - Dictionaries can
S1EEp] be used in a
context that a

list can be used

Dictionaries in Python

* Dictionary data type can be seen as a tool for mapping between
arbitrary data types:

* A look up tool (best exemplified by conventional dictionaries).
* Dictionaries are not sequences, thus the keys are not inherently ordered.

>>> list(pos)

["1deas”, "furiously®, "colorless”,
>>> sorted(pos)

["colorless™, "furiously”", "ideas”, "sleep”]
>>> [w for w in pos 1If w.endswith("s")]
["colorless™, "ideas”]

"sleep”]

Dictionaries: Main Methods

« keys(), values() and 1tems() are methods to access dictionaries.

Dictionaries: Main Methods

« keys(), values() and 1tems() are methods to access dictionaries.

>>> list(pos.keys())
[Fcolorless™, “"furiously®, "sleep”, "i1deas"]
>>> list(pos.values())
[FADJ", “ADV®", "V*, "N7"]
>>> list(pos.items())
[("colorless®, "ADJ"), (“furiously®, “"ADV"), ("sleep”, "V"), ("ideas”, "N")]
>>> for key, val in sorted(pos.items()):
print(key + ":', val)

colorless: ADJ
furiously: ADV
1deas: N
sleep: V

Text Mining Project --- Behrang QasemiZadeh ©

15

QuIz:

* What is the output for the following code?

'V'
'N'

>>> pos[“sleep”]
>>> pos[“sleep”]
>>> pos|“sleep”]

Text Mining Project --- Behrang QasemiZadeh ©

16

Quiz:
* What is the output for the following code?

>>> pos[“sleep™] = "V*©
>>> pos[“sleep™] = "N-
>>> pos|“sleep”]

w w - v - . .
N sleep’ is simply overwritten
by the new value “N~

Keys are unique: the key

QuIz:

* What is the output for the following code?

>>> pos[“sleep”] A
>>> pos[“sleep”]
>>> pos[“sleep”] To store multiple
values for a key

'N'

use a list value!

Quiz:
* What is the output for the following code?

>>> pos[“sleep™] = [°V","N"]

Text Mining Project --- Behrang QasemiZadeh ©

19

Defining Dictionaries

* Key-value pair format is used to create a dictionary:

>>> pos
>>> pos

{"colorless”":"ADJ","1deas":"N","sleep":"V","furiously":"ADV"}
dict(colorless="ADJ", 1deas="N", sleep="V", furiously="ADV")

» Keys must be immutable values (string, tuple, ...) otherwise you get a
TypeError:

>>> pos = {["i1deas”, "blogs®", "adventures®]: °"N"}
Traceback (most recent call last): File "<stdin>",
line 1, In <module>

TypeError: list objects are unhashable

Text Mining Project --- Behrang QasemiZadeh © 20

Default Dictionaries

* If we try to access a key that is not in a dictionary, we get an error.

 We can use defaultdict to automatically create an entry for new
keys and give them a default value

>>> from collections import defaultdict
>>> frequency = defaultdict(int)

>>> frequency[“colorless™] = 4

>>> frequency[" i1deas”]

o)

>>> pos = defaultdict(list)

>>> pos[“sleep®] = ["NOUN®, *"VERB"]

>>> pos[-“i1deas”]

L]

Default Dictionaries

* If we try to access a key that is not in a dictionary, we get an error.

 We can use defaultdict to automatically create an entry for new
keys and give them a default value

>>> from collections import defaultdict
>>> frequency = defaultdict(int)
>>> frequency[“colorless™] = 4 Check the size of pos
>>> frequency["ideas”] dictionary to verify the
0 functionality of the

>>> pos = defaultdict(list) defaultdict(list)
>>> pos[“sleep™] = ["NOU\g
>>> pos[-“i1deas”]

L]

Default Dictionaries

* If we try to access a key that is not in a dictionary, we get an error.

 We can use defaultdict to automatically create an entry for new
keys and give them a default value

>>>
>>>
>>>
>>>
o)

>>>
>>>
>>>

L]

from collections import defaultdict

frequency = defaultdict(int) Functions list or int can be replaced by any
frequency[“colorless™] = 4 other functions or expression, e.g. try
frequency[" 1deas”] defaultdict()

pos = defaultdict(list)
pos[“sleep™] = ["NOUN",
pos[- 1deas”]

"VERB"]

Default Dictionaries: Usage Example

* Sometimes, we like to work with a “fixed vocabulary”

* Let’s keep an inventory of top 100 frequent words in a corpus and
replace the rest with special “out of vocabulary” token UNK:

>>> alice nltk.corpus.gutenberg.words(“carroll-alice.txt")
>>> vocab nltk.FreqgDist(alice)
>>> v100 = [word for (word,) in vocab.most common(100)]
>>> mapping = defaultdict(lambda: “UNKT®)
>>> for v in v100:
mapping[v] = v
>>> alice2 = [mapping[v] for v in alice]
>>> alice2[:10]
[FTUNK®, “Alice®, """, "s", "UNK®", "in", "UNK", "by", “UNK®", “UNK"]
>>> len(set(alice2))
101

Incrementally Updating a Dictionary

* As practiced before, we can use dictionaries to count frequencies:

>>> fTrom collections import defaultdict

>>> counts = defaultdict(int)

>>> Trom nltk.corpus import brown

>>> for (word, tag) in brown.tagged words(\
categories="news", tagset="universal"):
countsf[tag] += 1

>>> counts["NOUN"]

30640

Incrementally Updating a Dictionary

* As practiced before, we can use dictionaries to count frequencies:

>>> fTrom collections import defaultdict

>>> counts = defaultdict(int)

>>> Trom nltk.corpus import brown

>>> for (word, tag) in brown.tagged words(\
categories="news", tagset="universal"):
countsf[tag] += 1

>>> counts["NOUN"]

30640

>>> sorted(counts)
[FTADJ®, °“PRT®", “ADV®, *X", "CONJ®", "PRON", “VERB®", ".%, “NUM®",
"NOUN®, “ADP®", "DET"]

1 temgetter to sort dictioanries by values

>>> fTrom collections import defaultdict

>>> counts = defaultdict(int)

>>> from nltk.corpus import brown

>>> for (word, tag) in brown.tagged words(\
categories="news", tagset="universal®):
countsf[tag] += 1

>>> sorted(counts)
[FTADJ", "PRT", "ADV", "X", "CONJ", "PRON", "VERB", ".", "NUM", "NOUN®", "ADP", "DET"]

>>> from operator import itemgetter
>>> sorted(counts.items(), key=itemgetter(l), reverse=True)
[("NOUN", 30640), ("VERB", 14399), ("ADP", 12355), (".", 11928), ...]
>>> [t for t, c In \

sorted(counts.items(), key=itemgetter(l), reverse=True)]
[*"NOUN®", *"VERB", “ADP", *"_.", "DET", "ADJ", “ADV", "CONJ", "PRON",
"PRT", "NUM®, "X"]

Text Mining Project --- Behrang QasemiZadeh © 27

1 temgetter to sort dictioanries by values

>>> from collections import defaultdict

>>> counts = defaultdict(int)

>>> Trom nltk.corpus import brown

>>> for (word, tag) in brown.tagged words (\
categories="news", tagset grsal’):
countsftag] += 1

>>> sorted(counts)
[TADJ", "PRT", “"ADV", "X", "CONJ', 'PRof , "VERB", "_", "NUM", "NOUN®", "ADP", "DET"]

>>> Trom operator import itemgetter
>>> sorted(counts.items(), key=itemgetter(l), reverse=True)
[("NOUN", 30640), ("VERB", 14399), ("ADP", 12355), (".", 11928), ...]
>>> [t for t, c in \

sorted(counts.items(), key=itemgetter(l), reverse=True)]
["NOUN®", *"VERB®", “ADP*, *_.", "DET", "ADJ", "ADV", "CONJ", "PRON",
"PRT", "NUM®, *X"]

1 temgetter to sort dictioanries by values

* The first parameter of sorted() is the items to sort, a list of tuples (POS tag, frequency).
* The second parameter specifies the sort key using a function 1temgetter().
* The last parameter of sorted() specifies that the items should be returned in reverse order.

>>> fTrom operator import itemgetter

>>> sorted(counts.items(), key=itemgetter(l), reverse=True)

[("NOUN®", 30640), ("VERB®", 14399), ("ADP", 12355), (".", 11928), ...]
>>> [t for t, c in \

sorted(counts.items(), key=itemgetter(l), reverse=True)]
["NOUN®", *"VERB®", “ADP*, *_.", "DET", "ADJ", "ADV", "CONJ", "PRON",
"PRT", "NUM®, *X"]

Quiz

* Create an anagram dictionary using the list of words available from
nltk.corpus.words.words("en®).

* An anagram of a word (phrase, or sentence) is obtained by
rearranging its letters: “Angel” is an anagram of “glean”.

>>> words = nltk.corpus.words.words("en®)
>>> anagrams = defaultdict(list)
>>> fTor word iIn words:

key = ""_join(sorted(word))

Quiz

* Create an anagram dictionary using the list of words available from
nltk.corpus.words.words("en®).

* An anagram of a word (phrase, or sentence) is obtained by
rearranging its letters: “Angel” is an anagram of “glean”.

>>> words = nltk.corpus.words.words("en®)
>>> anagrams = defaultdict(list)
>>> fTor word iIn words:
key = ""_join(sorted(word))
anagrams|[key] .append(word)
>>> anagrams|[“aent”]
[uante®, u“"etna®, u"neat”, u“"taen®, u“"tane®", u“"tean”]

Quiz

* Create an anagram dictionary using the list of words available from
nltk.corpus.words.words("en®).

* An anagram of a word (phrase, or sentence) is obtaineg
. . Py) py You can replace these
rearranging its letters: “Angel” is an anagram of “gle ;"

>>> words = nltk.corpus.words.words("en®) using nltk. Index
>>> anagrams = defaultdict(list)
>>> fTor word iIn words:
key = ""_join(sorted(word))
anagrams|[key] .append(word)
>>> anagrams|[“aent”]
[uante®, u“"etna®, u"neat", u“"taen®, u“"tane®, u"tean"]

Quiz

* Create an anagram dictionary using the list of words available from
nltk.corpus.words.words("en®).

* An anagram of a word (phrase, or sentence) is obtaineg
You can replace these

rearranging its letters: “Angel” is an anagram of “gle ;"
using nltk. Index

anagrams = nltk. Index(("".join(sorted(w)), w) for w in words)

>>> anagrams|[“aent”]
[u"ante®, u"etna®, u"neat", u"taen”, u“"tane®", u"tean"]

Complex Keys and Values

e Often we need to use dictionaries with complex keys and values.

* For instance, we may like to guess the PoS of a word, given the word
itself, and the tag of the previous word.

Complex Keys and Values

e Often we need to use dictionaries with complex keys and values.

* For instance, we may like to guess the PoS of a word, given the word
itself and the tag of the previous word.

>>> pos = defaultdict(lambda: defaultdict(int))

>>> prown_news_ tagged = nltk.corpus.brown.tagged words(\
categories="news", tagset="universal®)

>>> for ((wl, t1), (w2, t2)) in \
nltk.bigrams(brown_news tagged):
pos[(tl, w2)][t2] += 1

>>> pos[(°DET", "right")]

defaultdict(<class "iInt">, {"ADJ": 11, "NOUN": 5})

Complex Keys and Values

e Often we need to use dictionaries with complex keys and values.

* For instance, we may like to guess the PoS of a word, given the word
itself and the tag of the previous word.

The default value is a
dictionary of default
value I1nt(), i.e. zero

>>> pos = defaultdict(lambda: defaultdict(int))

>>> prown_news_ tagged = nltk.corpus.brown.tagged words(\
categories="news", tagset="universal®)

>>> for ((wl, t1), (w2, t2)) in \
nltk.bigrams(brown_news tagged):
pos[(tl, w2)][t2] += 1

>>> pos[(°DET", "right")]

defaultdict(<class "iInt">, {"ADJ": 11, "NOUN": 5})

Complex Keys and Values

e Often we need to use dictionaries with complex keys and values.

* For instance, we may like to guess the PoS of a word, given the word
itself and the tag of the previous word.

>>> pos = defaultdict(lambda: defaultdict(int))

>>> prown_news_ tagged = nltk.corpus.brown.tagged words(\
categories="news", tagset="universal®)

>>> for ((wl, t1), (w2, t2)) in \ In fact, we iterated over
nltk.bigrams(brown_news tagged): the bigrams in the corpus
pos[(tl, w2)][t2] += 1

>>> pos[(°DET", "right")]

defaultdict(<class "iInt">, {"ADJ": 11, "NOUN": 5})

Complex Keys and Values

e Often we need to use dictionaries with complex keys and values.

* For instance, we may like to guess the PoS of a word, given the word
itself and the tag of the previous word.

>>> pos = defaultdict(lambda: defaultdict(int))

>>> prown_news_ tagged = nltk.corpus.brown.tagged words(\
categories="news", tagset="universal®)

>>> for ((wl, t1), (w2, t2)) in \
nltk.bigrams(brown_news_tagged): And, here is the compound
pos[(tl, w2)][t2] key that stores the word and

>>> pos[(°DET", "right®)] its previous tag

defaultdict(<class "iInt">, {"ADJ": 11, "NOUN": 5})

Inverting a Dictioanry

* Dictionaries are efficient for look-ups using keys

* But, finding a key given a value, i.e. "reverse lookup", is slow and
cumbersome.
* If reverse lookup is often used, then we need to create a dictionary

that maps values to keys:
* Be cautions of multiple values, i.e. use defaultdict(li1st) to store !

e Alternately, use NLTK

Inverting a Dictioanry

* Dictionaries are efficient for look-ups using keys

* But, finding a key given a value, i.e. "reverse lookup", is slow and
cumbersome.

* If reverse lookup is often used, then we need to create a dictionary

that maps values to keys:
* Be cautions of multiple values, i.e. use defaultdict(li1st) to store !

e Alternately, use NLTK

>>> pos = {"colorless”: "ADJ", "ideas": °"N", "sleep”: "V", "furiously": “ADV"}
>>> pos2 = nltk.Index((value, key) for (key, value) in pos.items())

>>> pos2[“ADVT]

["peacefully”, "furiously"]

Dictionaries: Summary of Methods

Example

d = {}

d[key] = value
d.keys()
list(d)
sorted(d)

key 1n d

for key 1In d
d.values()

dict([(k1,vl), (k2,v2),

d1l.update(d2)
defaultdict(int)

--D

Description

create an empty dictionary and assign itto d
assign a value to a given dictionary key

the list of keys of the dictionary

the list of keys of the dictionary

the keys of the dictionary, sorted

test whether a particular key is in the dictionary
iterate over the keys of the dictionary

the list of values in the dictionary

create a dictionary from a list of key-value pairs
add all items from d2 to d1

a dictionary whose default value is zero

