Chapter 3.
Processing Raw TeXxt

Behrang QasemiZadeh

This work is licensed under a Creative Commons BttributioreShareAliked04tefhational License. @ ® 0O

Outline

* Accessing text
* From local files
* From the web

e Regular Expressions

* Text Sectioning and Segmentation
* Tokenization
* Stemming

* Producing formatted outputs

Accessing a text file from the web

>>> from urllib import urlopen

>>> url = "http://www.gutenberg.org/files/2554/2554 . txt"
>>> raw = urlopen(url) .read()

>>> type(raw)

<type °"str-°>

>>> len(raw)

1176831

>>> raw| - 75]
"The Project Gutenberg EBook of Crime and Punishment, by Fyodor Dostoevsky\r\n®

Text Mining Project --- Behrang QasemiZadeh ©

Accessing a text file from the web

Source text file

on the web

>>> from urllib import urlopen
>>> url = "http://www.gutenberg.org/fTiles/2554/2554 . txt"
>>> raw = urlopen(url) .read()

>>> type(raw)

<type °"str-°>

>>> len(raw)

1176831

>>> raw| - 75]
"The Project Gutenberg EBook of Crime and Punishment, by Fyodor Dostoevsky\r\n*

Text Mining Project --- Behrang QasemiZadeh ©

Accessing a text file from the web

>>> from urllib Import urlopen

>>> url = "http://www.gutenberg.org/files/2554/2554 . txt"
>>> raw = urlopen(url) _read()

>>> type(raw

<type "str"> Tell me the typg of
accessed material!l

>>> len(raw)

1176831

>>> raw| - 75]
"The Project Gutenberg EBook of Crime and Punishment, by Fyodor Dostoevsky\r\n*

Text Mining Project --- Behrang QasemiZadeh ©

Accessing a text file from the web

>>> from urllib Import urlopen

>>> url = "http://www.gutenberg.org/files/2554/2554 . txt"
>>> raw = urlopen(url) .read()

>>> type(raw)

<type °"str-°>

1176831 length of text

>>> raw| - 75]
"The Project Gutenberg EBook of Crime and Punishment, by Fyodor Dostoevsky\r\n*

Text Mining Project --- Behrang QasemiZadeh ©

Accessing a text file from the web

>>> from urllib Import urlopen

>>> url = "http://www.gutenberg.org/files/2554/2554 . txt"
>>> raw = urlopen(url) .read()

>>> type(raw)

<type °"str-°>

=== Ien(raw) Give me the first 75

1176831 characters!

>>> raw| - 75]

"The Project Gutenberg EBook of Crime and Punishment, by Fyodor Dostoevsky\r\n*

Text Mining Project --- Behrang QasemiZadeh ©

Accessing a text file from hard drive

*Let’s discuss assignment 1 and 2!

Text Tokenization

>>> pmport nltk

>>> tokens = nltk.word_tokenize(raw)

>>> len(tokens)

254354

>>> tokens|:10]

|"The", "Project”, "Gutenberg®", "EBook", "of", "Crime-,
*and®, "Punishment®, ",", “"by"]

>>>

Text Mining Project --- Behrang QasemiZadeh ©

Text Tokenization

Import NLTK and use

>>> mport nltk tokenization function
>>> tokens = nltk.word_ tokenize(raw)
>>> (tokens)

254354

>>> tokens|:10]

|"The", "Project”, "Gutenberg®", "EBook", "of", "Crime-,
*and®, "Punishment®, ",", “"by"]

>>>

Text Tokenization

>>> import nltk
>>> tokens = nltk.word tokenize(raw)
>>> (tokens)

254354
>>> tokens[:10] of tokens

|"The", "Project”, "Gutenberg®", "EBook", "of", "Crime-,
*and®, "Punishment®, ",", “"by"]
>>>

Text Tokenization

>>> import nltk

>>> tokens = nltk.word tokenize(raw)
>>> (tokens)
254354

>>> tokens|:10]
|"The", "Project”, "Gutenberg®", "EBook", "of", "Crime-,
*and®, "Punishment®, ",", “"by"]

>>>

Give me the first

ten tokens

Quiz

* What is the type () of tokens in the following code?

>>> import nltk
>>> tokens = nltk.word tokenize(raw)

Quiz

* What is the type () of tokens in the following code?

>>> import nltk
>>> tokens = nltk.word tokenize(raw)

Simple Text Segmentation Using F1nd ()

* Text Segmentation might be required for reducing noise.

* A raw text file may contain a header or a footer, e.g. in the beginning
of a text file we may see:
e copyright notice
 project information
* efc.

>>> raw[:75]
"The Project Gutenberg EBook of Crime and Punishment,
by Fyodor Dostoevsky\r\n-®

Simple Text Segmentation Using F1nd ()

* Sometimes, a manual inspection can help the identification of text
segments, e.g. using unique strings that mark beginning and end of
text files.

 find()and rfind() canbe used in these cases:

>>> raw.Find("PART I')
5338

>>> raw.rfind("End of Project Gutenberg®s Crime')
1157743

>>> raw[5303: 5471]
"\N\r\n\r\nCRIME AND PUNISHMENT\r\n\r\n\r\n\r\n\r\nPART
INF\N\\N\r\n\r\nCHAPTER I\r\n\r\nOn an exceptionally hot evening early in

July a young man came out of\r\nthe garret in which he lodged In S.*
>>>

Dealing with HTML

* HTML documents are frequent on the web:

>>> from urllib import urlopen

>>> url = “http://news.bbc.co.uk/2/hi1/health/2284783.stm”
>>> html = urlopen(url) _read()

>>> html|[:20]

"<ldoctype html public”

>>>

* To extract raw text from a HTML file, we must first get rid of HTML
mark-ups.

Text Mining Project --- Behrang QasemiZadeh ©

Dealing with HTML — Using Beautiful Soup

 nltk.clean_html ()used to be used to strip HTML tags from your
fetched string.

* The function is dropped since better alternatives are available.
* Beautiful Soup is a module that provides functionalities for
removing HTML tags.

* To install Beautiful Soup:
« $apt-get install python-bs4
« $pip install beautifulsoup4
e you can download the Beautiful Soup 4 source tarball and install it with setup.py
$ python setup.py install

* See http://www . crummy . com/software/BeautifulSoup/bs4a/doc/ fOr documentation.

Beautiful Soup Example

>>> from urllib import urlopen

>>> url = “http://news.bbc.co.uk/2/hi/health/2284783.stm”

>>> html = urlopen(url) _read()

>>> html[:60]

"<ldoctype html public "-//W3C//DTD HTML 4.0 Transitional//EN*
>>> soup = BeautifulSoup(html)

>>> clean_text = soup.get text()

>>> clean_text| :60]

u\n\n\nBBC NEWS | Health | Blondes "to die out in 200

years"\n\n\n\n"
>>>

Text Mining Project --- Behrang QasemiZadeh ©

Beautiful Soup Example

>>> from urllib import urlopen
>>> url = “http://news.bbc.co.uk/2/hi/health/2284783.stm”

>>> html = urlopen(url) _read()

>>> html|[:60]

"<ldoctype html public "-//W3C//DTD HTML 4.0 Transitional//EN*
>>> soup = BeautifulSoup(html)

>>> clean_text = soup.get text()

>>> clean_text| :60]

u\n\n\nBBC NEWS | Health | Blondes "to die out in 200

years"\n\n\n\n"
>>>

Compare the

outputs

Processing RSS Feeds

* RSS feeds can be also accessed using Feedparser module.

>>> import feedparser
>>> llog = feedparser .parse(
"http://1languagelog. Idc.upenn.edu/nll/?feed=atom')
>>> llog|"feed" |["title"]
u*Language Log®
>>> len(llog.entries)
15
>>> post = llog.entries|2]
>>> post.title
u*A childé's substitution of Pinyin (Romanization) for characters®
>>> content = post.content|0].value
>>> content| :70]
u"<p>The following diary entry by an elementary school student is making”

>>> Text Mining Project --- Behrang QasemiZadeh ©

Processing RSS Feeds

* RSS feeds can be also accessed using Feedparser module.

>>> pmport feedparser
>>> llog = fTeedparser._parse(

"http://1languagelog. Idc.upenn.edu/nll/?feed=atom')
>>> llog|“"feed"]["title"]
u®Language Log-
= (Ilog.-entries) and fetch
15
>>> post = llog.entries| 2]
>>> post.title
u*A childé's substitution of Pinyin (Romanization) for characters®
>>> content = post.content|0].value
>>> content| :70]

u*<p>The following diary entry by an elementary school student is making"
>>>

Locate the feed

Processing RSS Feeds

* RSS feeds can be also accessed using Feedparser module.

>>> pmport feedparser
>>> llog = fTeedparser._parse(

"http://1languagelog. Idc.upenn.edu/nll/?feed=atom')
>>> llog|“"feed"]["title"]

u®Language Log" Work with
>>> (llog.entries) content!
15

>>> post = llog.entries| 2]

>>> post.title

u*A childé's substitution of Pinyin (Romanization) for characters®
>>> content = post.content|0].value

>>> content| :70]

u*<p>The following diary entry by an elementary school student is making"
>>>

Processing RSS Feeds: accessing news

>>> pmport feedparser

>>> rssbbchews =

feedparser .parse('http://feeds.bbci .co.uk/news/world/rss.xml")
>>> rssbbcnews ["feed"]["title"]

u"BBC News - World*

>>> (rssbbcnews.entries)

53

>>> postbbc = rssbbcnews.entries|1]

>>> postbbc.title

U"EU court backs migrant benefit curbs

>>> postbbc.description

u"The European Court of Justice backs curbs on unemployed migrants®” access to
certain benefits, setting a legal precedent for all EU member states."

>>>

Quiz: Processing RSS Feeds

In the previous example, what is the output for

bbcpost.content|0].value

and Why?

Quiz: Processing RSS Feeds

In the previous example, what is the output for

bbcpost.content|0].value

and Why?

RSS structure

is important!

Capturing user Input

* Python function raw_1nput()can be used to prompt the user to
type a line of input:

>>> text = raw_input(how are you? ')

how are you? 1 am fine!

>>> print "You typed', len(nltk.word tokenize(text)),\
"words: " , text

You typed 4 words: 1 am fine!
>>>

Text Mining Project --- Behrang QasemiZadeh ©

Additional Text Sources

* There are a number of other sources to access raw text strings.

* There are often specialized APIs that let you access text from different
platforms:
* Accessing text from XML files
* Accessing text from databases
* Accessing text from social networks
* Accessing text from MS Word and PDF files
* Etc.

Quiz — Programming Exercise

* Implement codes for an NLP Pipeline that
1. Fetches the text from an HTML file on the web
2. Strip off HTML tags and get clean text strings
3. Convert the text into vocab/lexicon, i.e. a list of sorted words

Quiz — Programming Exercise

| HTML html = urlopen(url).read() Download web page,
raw = nltk.clean html (html) strip HTML if necessary,
raw = raw[750:23506] trim to desired content

SR

ASCII _

\ y tokens = nltk.wordpunct tokenize(raw) [Tokenize the text,
tokens = tokens[20:1834] select tokens of interest,

' Text ‘ text = nltk.Text(tokens) create an NLTK text

—)

words = [w.lower() for w in text] Normalize the words,

Text Mining Project --- Behrang QasemiZadeh ©

Processing of Strings (Review)

e Strings are marked by “ or “

* If a string is too long, you can break it down by using parentheses or \

>>> couplet = "Shall 1 compare thee to a Summer®s day?"
>>> couplet
"Shall | compare thee to a Summer®s day?"
>>> couplet = ""Shall I compare thee to a Summer®s day?'\
"Though are """
>>> couplet
"Shall | compare thee to a Summer®s day?Though are
>>> couplet = "Shall 1 compare thee to a Summer®"s day?"\
"Though are \"\"\""
>>> couplet
"Shall | compare thee to a Summer®s day?Though are
>>> couplet = (“shall 1...*
"Though are...™)
>>> couplet
"shall 1.._.Though are.._"

>>> couplet = shall 1... Though are...
>>> Couplet "shall 1.. '\nTﬂ%mg%ﬁd —'——‘B;hrang QasemiZadeh ©

Processing of Strings (Review)

e Strings are marked by ‘ or

* If a string is too long, you can break it down by using parentheses or \

>>> couplet = "Shall 1 compare thee to a Summer®s day?"
o2 Golplie Pay attention to
"Shall | compare thee to a Summer®s day?"
>>> couplet = ""Shall I compare thee to a Summer®s day?'\ theyseof\fpr
"Though are """" breaking long lines
>>> couplet
"Shall | compare thee to a Summer®s day?Though are
>>> couplet = "Shall 1 compare thee to a Summer®"s day?"\
"Though are \"\"\""
>>> couplet
"Shall 1 compare thee to a Summer®"s day?Though are
>>> couplet = (“shall 1...*
"Though are...™)
>>> couplet
"shall 1.._.Though are.._"
>>> couplet = """ shall I... Though are...
>>> couplet "shall 1...\nThough are.._"

Processing of Strings (Review)

e Strings are marked by ‘ or

* If a string is too long, you can break it down by using parentheses or \

>>> couplet = "Shall 1 compare thee to a Summer®s day?"
>>> couplet
"Shall | compare thee to a Summer®s day?"
>>> couplet = ""Shall I compare thee to a Summer®s day?'\
"Though are """
>>> couplet
"Shall | compare thee to a Summer®s day?Though are
>>> couplet = "Shall 1 compare thee to a Summer®"s day?"\
"Though are \"\"\""
>>> couplet
"Shall | compare thee to a Summer®s day?Though are
>>> couplet = (“shall 1...*
"Though are...™)
>>> couplet
"shall 1.._.Though are.._"
>>> couplet = """ shall I... Though are...
>>> couplet "shall 1...\nThough are.._"

Pay attention to the

scape character uses
with single quotes.

Processing of Strings (Review)

e Strings are marked by ‘ or

* If a string is too long, you can break it down by using parentheses or \

>>> couplet = "Shall 1 compare thee to a Summer®s day?"
>>> couplet
"Shall | compare thee to a Summer®s day?"
>>> couplet = ""Shall I compare thee to a Summer®s day?'\
"Though are """
>>> couplet
"Shall | compare thee to a Summer®s day?Though are
>>> couplet = "Shall 1 compare thee to a Summer®"s day?"\ Pay attention to the
"Though are \"\"\"" use of parentheses
>>> couplet
"Shall | compare thee to a Summer®s day?Though are
>>> couplet = (“shall 1...*
"Though are...™)
>>> couplet
"shall 1.._.Though are.._"
>>> couplet = """ shall I... Though are...
>>> couplet "shall 1...\nThough are.._"

for breaking long
strings

Processing of Strings (Review)

e Strings are marked by ‘ or

* If a string is too long, you can break it down by using parentheses or \

>>> couplet = "Shall 1 compare thee to a Summer®s day?"
>>> couplet
"Shall | compare thee to a Summer®s day?"
>>> couplet = ""Shall I compare thee to a Summer®s day?'\
"Though are """
>>> couplet
"Shall | compare thee to a Summer®s day?Though are
>>> couplet = "Shall 1 compare thee to a Summer®"s day?"\
"Though are \"\"\""
>>> couplet
"Shall | compare thee to a Summer®s day?Though are

>>> couplet = (“'shall I.._._“
“Though are...™) Pay attention to the use

>>> couplet of triple double quotes
"shall 1...Though are..." and the inserted \n in
""" the string

>>> couplet = shall I... Though are...
>>> couplet "shall 1...\nThough are.._"

Important String Operations (review)

* Accessing individual characters and substrings using “string slicing”

>>> string = "Monty Python™
>>> string[O]

"M* [6:10]

>>> string[-1] o 1 2 3 4 &6 6 7 8 9 10 11
"n* Mlo|n|t|y Ply|t|h|o _EJ
>>> string[6:10] B T g Fg e ——
“Pyth” [=12:=7]

>>> string[-12:-7]}
"Monty*

Text Mining Project --- Behrang QasemiZadeh ©

Important String Operations (review)

* Accessing individual characters and substrings using “string slicing”

>>> string = "Monty Python™
>>> string[O]

B [6:10]

>>> string[-1] o 1 2 3 4 &6 6 7 8 9 10 11
"n* Mfo|n|t|y Ply|lt|h|o|n
>>> string[6:10] B T g Fg e ——
R [Ei12 7]

>>> string[-12:-7]

"Monty*

Find the position of substrings using F1nd () (Example given in previous slides)

Text Mining Project --- Behrang QasemiZadeh ©

Further String Operations

s.find(t) Index of first instance of string tinside s (-1 if not found)
s.rfind(t) Index of last instance of string t inside s (-1 if not found)
s.index(t) Like s. Find(t), except it raises ValueError if not found
s.rindex(t) Like s. rfind(t), except it raises ValueError if not found
s.join(text) Combine the words of the text into a string using s as the glue
s.split(t) Split s into a list wherever a t is found (whitespace by default)
s.splitlines() Split s into a list of strings, one per line

s.lower() A lowercased version of the string S

s.upper() An uppercased version of the string S

s.titlecase() A title-cased version of the string S

s.strip(Q) A copy of S without leading or trailing whitespace

s.replace(t, u) Replace instances of t with u inside s

Quiz

* In python, what are the similarities and differences between lists and
strings?

Quiz

* In python, what are the similarities and differences between lists and
strings?
e Similarities:
* Both represent sequential data.
* Both list and string can be manipulated by indexing and slicing.
* Differences:

e Lists may represent data at different level of granularity, e.g.
lists of lists, but strings only represent sequence of characters
(i.e. fixed granularity)

* Lists are mutable but strings are immutable

Quiz

* In python, what are the similarities and differences between lists and
strings?
e Similarities:
* Both represent sequential data.

* Both list and string can be manipul . . _
Define a string (e.g. textString)

* Differences: and a list (e.g. listString) and
. . assign values to them, then try to

* L,IStS ma_y represent data at dlffe change the first element of each
(i.e. fixed granularity) textString[0] = “A” or

* Lists are mutable but strings are imm bt B

Text Encoding and Unicode

* ASCIl is a character encoding system that only supports only 128
different characters (for 7-bit encoding system or 255 for single byte):
« Sufficient for English text (or when we only deal with 128characters)

. Insufgcient for many other languages, e.g. how to represent Arabic character
s or J?

* What if we want to deal with text in Chinese, English and Arabic at the same
time?
* Unicode supports over a million characters:
* Asingle character set that included every reasonable writing system
* Each character is assigned a number, called a code point.
* Code points are four digit hexadecimal numbers (in Python presented as \uXXxX).

Unicode: characters not glyphs

* In Unicode, characters are abstract entities that can have one or more
glyphs (that is the written shape).
* For example in Arabic writing system a character can have 4 different glyphs:
For single character /ye/: T

* A font system and additional algorithms take care after proper
representation of character codes.

Unicode, ASCII, UTF-8 and other encodings

* ASCII can only represent a subset of Unicode characters.

 UTF-8 (amongst other encodings) uses multiple bytes and can
represent the full range of Unicode characters.
« Why UTF-8?

Unicode, ASCII, UTF-8 and other encodings

Do some Python processing
GB2312 o
; decode
Lﬂ' Unicode
UTF-8

File / Terminal In-memory program File / Terminal

GB2312

encode >‘\Latl;

Text Mining Project --- Behrang QasemiZadeh ©

Unicode, ASCII, UTF-8 and other encodings

@’ Do some Python processing GB2312
Ll‘aﬁ; decode tirisads encode >|\-I_atm/2
4
L_E Decoding
Process

File / Terminal N-memory program File / Terminal

Unicode, ASCII, UTF-8 and other encodings

D Pyth '
L—Gmﬁ’ 0 some(ﬂocessmg
Ll‘ati} decode
UTE-8 Encoding
Processing

File / Terminal In-memory program File / Terminal

GB2312

encode >|\-I_at|n/2

Extracting Encoded Text from Files

* The Python codecs module provides functions to read encoded data
into Unicode strings.

* Encoding can be set as a parameter in the codecs.open() function when the
file being read or written:

>>> 1mport codecs
>>> F = codecs.open(path, encoding="latin2")

e See http://docs.python.orqg/lib/standard-encodings.html! for the list of
permitted encodings.

Text Mining Project --- Behrang QasemiZadeh ©

Exercise/Quiz

* Create a UTF-8 file using a text editor.
* Read the file using ASCIl encoding
* Read the file using UTF-8 encoding
 Compare the outputs

* Convert the encoding of the file into Latin2
* We can write Unicode-encoded data to a file using

f = codecs. (path, "w", encoding="latin2")

Extracting Encoded Text from Files

* Other methods you may want to know:

« text.encode(“unicode escape?): converts all non-
ASCII characters in text into their \uXXXX representations.

« U”\XXXX”: use to specify Unicode string literals.
 ord(X): the integer ordinal of a character.

* repr(): outputs the UTF-8 escape sequences (of the
form \xXX) rather than trying to render the glyphs.

e Also see functions in the module unicodedata.

Further reading on encoding

* Must read: https://docs.python.org/2/howto/unicode.html

* Intro to character sets: http://www.cs.tut.fi/~jkorpela/chars.html

* Official Unicode site: http://www.unicode.org

* Also read http://www.joelonsoftware.com/articles/Unicode.html

e Python Unicode Objects: http://effbot.org/zone/unicode-objects.htm
* A tutorial: http://www.unicode.org/standard/tutorial-info.html

Text Mining Project --- Behrang QasemiZadeh ©

Using Regular Expressions in Python

* Regular expressions give us a powerful and flexible method to
describing character patterns that we are interested in.

Using Regular Expressions in Python

>>> pmport re

Text Mining Project --- Behrang QasemiZadeh ©

Using Regular Expressions in Python

>>> pmport re

>>> sent = At 08:35 GMT, the Rosetta satellite released its Philae lander

towards Comet 67P/Churyumov-Gerasimenko.
The mission will shine a light on some mysteries surrounding these icy relics from the

_ TNEENy
formation of our Solar System.

Text Mining Project --- Behrang QasemiZadeh ©

Using Regular Expressions in Python

>>> pmport re

>>> sent = At 08:35 GMT, the Rosetta satellite released its Philae lander

towards Comet 67P/Churyumov-Gerasimenko.
The mission will shine a light on some mysteries surrounding these icy relics from the

_ TNEENy
formation of our Solar System.

>>> pattern = re_compile("\\n")

Text Mining Project --- Behrang QasemiZadeh ©

Using Regular Expressions in Python

>>> Import re

>>> sent = At 08:35 GMT, the Rosetta satellite released its Philae lander

towards Comet 67P/Churyumov-Gerasimenko.

The mission will shine a light on some mysteries surrounding these icy relics from the

_ TNEENy
formation of our Solar System.

>>> pattern = re.compile(*"\\n")

>>> re.split(pattern,sent)

["At 08:35 GMT, the Rosetta satellite released 1ts Philae lander towards Comet
67P/Churyumov-Gerasimenko.®, "The mission will shine a light on some mysteries
surrounding these icy relics from the formation of our Solar System."]

Text Mining Project --- Behrang QasemiZadeh ©

Using Regular Expressions in Python

>>> pmport re

>>> sent = """"""At 08:35 GMT, the Rosetta satellite released its Philae lander

towards Comet 67P/Churyumov-Gerasimenko.

The mission will shine a light on some mysteries surrounding these icy relics from the

_ TRrnny
formation of our Solar System.

>>> pattern = re.compile("\\n")

>>> re.split(pattern,sent)

["At 08:35 GMT, the Rosetta satellite released i1ts Philae lander towards Comet
67P/Churyumov-Gerasimenko.", "The mission will shine a light on some mysteries
surrounding these icy relics from the formation of our Solar System."]

>>> timePtrn = re.compile((?:\d][01]\d|2[0-3]):[0-5]\d™)

>>> matchTime = re.search(timePtrn , sent)

>>> print "Matched time is", sent|matchTime.start():matchTime.end()]
Matched time is 08:35

>>>

Text Mining Project --- Behrang QasemiZadeh ©

Using Regular Expressions in Python

* Regular Expressions are important tools in natural language
processing with a number of applications:
* Tokenization
* Stemming
* Spell checking
* Extracting information
* Etc.

Using Regular Expressions in Python

* By practice, you can memorize
* meta-characters
* Wildcards
* Ranges
* Kleene Closures

Using Regular Expressions in Python

Operator

~abc
abc$
[abc]
[A-Z0-9]
ed]ing]|s

x*

Behavior

Wildcard, matches any character

Matches some pattern abc at the start of a string
Matches some pattern abc at the end of a string
Matches one of a set of characters

Matches one of a range of characters

Matches one of the specified strings (disjunction)

Zero or more of previous item, e.g. a*, [a-z]* (also known as Kleene
Closure)

Using Regular Expressions in Python

Operator Behavior

?

{n}
{n,}
{.n}
{m,n}
a(blc)
+

Zero or one of the previous item (i.e. optional),
e.g.a?, [a-Z]?

Exactly n repeats where n is a non-negative integer
At least n repeats
No more than n repeats

At least m and no more than n repeats

Parentheses that indicate the scope of the operators

Exercise: Rotokas Analysis

* Rotokas is a language spoken by some 4,000 people (Wikipedia).

* [t has the smallest alphabet in use (most probably!):
* Only10 lettessAEGIKOPRSTUYV

Exercise: Rotokas Analysis

* Rotokas is a language spoken by some 4,000 people (Wikipedia).
* [t has the smallest alphabet in use (most probably!):
* Only10 lettessAEGIKOPRSTUYV

* We would like to extract all consonant-vowel sequences from the
words of Rotokas, e.g. ka, si, ti, etc.

* A Rotokas dictionary is in NLTK distribution:
nltk.corpus.toolbox.words("rotokas.dic")

e Use regular expressions to extract all the combination of consonant-
vowels from this dictionary.

Text Mining Project --- Behrang QasemiZadeh ©

Exercise: Rotokas Analysis

>>> rotokas_words = nltk.corpus.toolbox.words("rotokas.dic")
>>> cvs = |cv for w In rotokas words for cv iIn
re.findall(r"[ptksvr][aeiou]”, w)]

Text Mining Project --- Behrang QasemiZadeh ©

Exercise: Rotokas Analysis

>>> rotokas_words = nltk.corpus.toolbox.words("rotokas.dic")
>>> cvs = |cv for w In rotokas words for cv iIn
re.findall(r"[ptksvr][aeiou]”, w)]

>>> for w In rotokas words:
for cv 1In re_findall(r-[ptksvr][aeiou]”, w):
cvs.append(cv)

Text Mining Project --- Behrang QasemiZadeh ©

Exercise: Rotokas Analysis

>>> rotokas_words = nltk.corpus.toolbox.words("rotokas.dic")
>>> cvs = |cv for w In rotokas words for cv iIn
re.findall(r"[ptksvr][aeiou]”, w)]

* Lets make a conditional frequency for the consonant and vowels:

* This can be presented by a contingency table:
* Each row represent a consonant and each column represent a vowel.
* Each cell of table shows the count of occurrences of a vowel after a consonant.

(< [7]” | [O [~

Exercise: Rotokas Analysis

>>> rotokas words = nltk.corpus.toolbox.words("rotokas.dic")

>>> ¢cvs = |cv for w iIn rotokas words for cv In
re.findall(r"[ptksvr][aeiou]®, w)]

>>> cfd = nltk.ConditionalFregDist(cvs)

>>> cfd.tabulate() lmﬂ_ﬂﬂ

418 148 94 420 173
H 83 31 105 34 51
187 63 84 89 7/9
O O 100 2 1
47 8 0 148 37

\'A 93 27 105 48 49

< ||V

Exercise: Rotokas Analysis

>>>
>>>

>>>
>>>

rotokas words

cfd = nltk.ConditionalFregDist(cvs)

cfd.tabulate()

= nltk.corpus.toolbox.words("rotokas.dic")
cvs = |cv for w In rotokas words for cv iIn
re.findall(r"[ptksvr][aeiou]®, w)]

A number of tasks in
statistical Natural
Language Processing

involves the study of
this table.

418 148 94 420 173
H 83 31 105 34 51
187 63 84 89 7/9
O O 100 2 1
47 8 0 148 37

\'A 93 27 105 48 49

< ||V

Exercise: Rotokas Analysis

>>> rotokas words = nltk.corpus.toolbox.words("rotokas.dic")

>>> ¢cvs = |cv for w iIn rotokas words for cv In
re.findall(r"[ptksvr][aeiou]®, w)]

>>> cfd = nltk.ConditionalFregDist(cvs)

cfd.tabulate() lﬁﬂ.ﬂﬂ

418 148 94 420 173

In this example, by examining H = | 2 laes| 20 | =0
the rows for s and t, we see

they are in partial 187 63 84 89 79
“complementary distribution” O 0 100 2 1

47 8 0 148 37
93 27 105 48 49

\"

< ||V

Exercise: Rotokas Analysis

>>> rotokas words = nltk.corpus.toolboxswords("rotokas.dic")
>>> cvs = |cv for w iIn rotoka CVv 1IN

re.findz
>>> cfd = nltk.Co
>>> cfd.tabulate()

T and S both represent the 18 94 420 173

In this exar¥ phoneme /t/, written with S
the rows for s°& before an / and in the name 31 105 34 51
= 'Rotokas', and with T 1187 63 84 89 79

“complenie elsewhere. .0 100 2 1
I 47 8 0 148 37
I 93 27 105 48 49

ext Mining Prdject --- Behrang QasemiZadeh ©

Exercise: Rotokas Analysis

>>> rotokas_woks ds("rotokas.dic")
>>>

94 420 173

84 89 79

0O 100 2 1
47 8 0 148 37
\ 93 27 105 48 49

Searching Tokenized Text: RegEx over Tokens

* NLTK offers the unique functionality of defining regular expressions
over lists of tokens:

* The angle brackets <> are used to mark token boundaries.

» RegEx patterns can be difnied over or within the <>
* E.g. “<a><man>”" finds all instances of “a man” in text.
* The pattern “<.*>” matches any single token

>>> 1mport nltk

>>> from nltk.corpus Import nps chat

>>> chat = nltk.Text(nps_chat.words())

>>> chat.findall(r''<.*> <_*> <bro>"")

you rulle bro; telling you bro; u twizted bro

Searching Tokenized Text: RegEx over Tokens

* NLTK offers the unique functionality of defining regular expressions
over lists of tokens:
* The angle brackets <> are used to mark token boundaries.

» RegEx patterns can be difnied over or within the <>
* E.g. “<a><man>”" finds all instances of “a man” in text.
* The pattern “<.*>” matches any single token

>>> import nltk nltk.Text isa
>>> from nltk.corpus Import nps chat wrapper around a
>>> chat = nltk.Text(nps_chat.words()) sequence of tokens

>>> chat.Findall(r'<.*> <_.*> <bro>")

you rule bro; telling you bro; u twizted bro
>>>

Searching Tokenized Text: RegEx over Tokens

* NLTK offers the unique functionality of defining regular expressions
over lists of tokens:
* The angle brackets <> are used to mark token boundaries.

» RegEx patterns can be difnied over or within the <>
* E.g. “<a><man>”" finds all instances of “a man” in text.
* The pattern “<.*>” matches any single token

>>> pmport nltk fi .

_ indall isthena
>>> from nltk.corpus import nps_chat function that enable us
>>> chat = nltk.Text(nps_chat.words()) to search for RegEx
>SS chat-findall(r"<-*> < *> <bro>") patterns over tokens
you rule bro; telling you bro; u twizted bro
>>>

Searching Tokenized Text: RegEx over Tokens

>>> chat.findall (r'"'<i.*>{3,}'")

ol 1ol lol; Imao 1ol lol; 1ol 1ol lol; 1a 1la la la la;
la 1a la; la la la; lovely 1ol 1ol love; 1ol lol lol._;
la lIa la; la la la

Application Example for RegEx over Tokens

* Information Extraction

» Searching a large text corpus for expressions of the form x and other ys allows
us to discover hypernyms.

* Hypernyms: superordinate, for example, color is a hypernym of red.

Application Example for RegEx over Tokens

* Information Extraction

» Searching a large text corpus for expressions of the form x and other ys allows
us to discover hypernyms.

* Hypernyms: superordinate, for example, color is a hypernym of red.

>>> from nltk.corpus import brown

>>> hobbies learned = nltk.Text(brown.words(categories=| "hobbies”,
"learned™"]))

>>> hobbies_learned.findall (r"<\w*> <and> <other> <\w*s>"")

speed and other activities; water and other liquids; tomb and other
landmarks; Statues and other monuments; pearls and other jewels; charts
and other i1tems; roads and other features; figures and other objects;
military and other areas; demands and other factors; abstracts and

other compilations; 1ron and other metals
>>>

Application Example for RegEx over Tokens

* Information Extraction
» Searching a large text corpus for expressions of the for :
us to discover hypernyms. Constructing an

* Hypernyms: superordinate, for example, color is a hypern ontology/taxonomy
of concepts!?

>>> from nltk.corpus import brown
>>> hobbies learned = nltk.Text(brown.words(categori
"learned™"]))

>>> hobbies_ learned.findall(r'"<\w*> <and> <other> <\w*s>")

speed and other activities; water and other liquids; tomb and other
landmarks; Statues and other monuments; pearls and other jewels; charts
and other i1tems; roads and other features; figures and other objects;
military and other areas; demands and other factors; abstracts and

other compilations; 1ron and other metals
>>>

Exercise

* Look for instances of the pattern as x as y to discover information
about entities and their properties.

Exercise

* Look for instances of the pattern as x as y to discover information
about entities and their properties.

re<as> <\w*> <as> <\w*>"

Text Normalization

* Normalization is a process that aims to eliminate unwanted
distinctions between text units:
» Simple example of uppercase letters to lowercase letters: The, THE, the -> the

* More sophisticate example of replacing names with the category of concept
they represent: Passau, Munich, Galway, New York -> <CITY>

Text Normalization

* Normalization is a process that aims to eliminate unwanted
distinctions between text units:

» Simple example of uppercase letters to lowercase letters: The, THE, the -> the

* More sophisticate example of replacing names with the category of concept
they represent: Passau, Munich, Galway, New York -> <CITY>

* It is an application dependant process.

e Common text normalization:
* Stemming
* Lemmatization

Stemming & Lemmatization

* In many applications, e.g. search, word form is not important, e.g.
laptop and laptops are both ok in search and information retrieval.
* Both laptop and laptops are a from of the stem or lemma “laptop”.
 Similarly, “walk, walking, walked” are inflected forms of lemma “walk”.
* Also, democracy, democratic, and democratization are derivationally related.

e Stemming and lemmatization is to reduce inflectional forms and
sometimes derivationally related forms of a word to a common base
form.*

*http://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

Stemming & Lemmatization

* Stemming usually refers to a heuristic process that strips off the ends
of words.

e Usually it gives the correct answer, and often includes the removal of
derivational affixes.
* Lemmatization is the more sophisticated way of getting word bases.
* |t uses a vocabulary and morphological analysis of words

* It is aiming to remove inflectional endings only and to return the base or
dictionary form of a word.

*http://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

Stemming Algorithms

* A naive approach for stemming is to simply strip off a set of suffixes

>>> def stemming(word):

for suffix In ["ing", "ly", "ed', "i1ous', "i1es', "ive",
"es', "'s", "ment"']:

IT word.endswith(suffix): print word|:-lfen(suffix)]

>>> stemming("'widely')
wide
>>> stemming("'Lily")
L1
>>>

Text Mining Project --- Behrang QasemiZadeh ©

Stemming Algorithms

* We can also use regular expressions:

r~(.*)(ingllyled|ious|ies|ive]es|s|ment)$"

Stemming Algorithms

* We can also use regular expressions:

r~(.*)(ingllyled|ious|ies|ive]es|s|ment)$"

>>> re.findall(r*~(.*)(ing|lyj]ed]ious]ies]ive]es|s|ment)$", "“processing”)
[("process™, "ing")]

Text Mining Project --- Behrang QasemiZadeh ©

Stemming Algorithms

* We can also use regular expressions:

r~(.*)(ingllyled|ious|ies|ive]es|s|ment)$"

>>> re.findall(r*~(.*)(ing]lyled]ious]ies]ive]es|s|ment)$",

"processing”)
[("process®, "ing")]
>>> re.findall(r*~2(.*)(ing|lyled]ious]ies]ive]es|s|ment)$”, "“processes”)
[("processe®, "s")]|

Text Mining Project --- Behrang QasemiZadeh ©

Stemming Algorithms

* We can also use regular expressions:

r~(.*)(ingllyled|ious|ies|ive]es|s|ment)$"

>>> re.findall(r*~(.*)(ing]lyled]ious]ies]ive]es|s|ment)$",

"processing”)
[("process®, "ing")]
>>> re.findall(r*~2(.*)(ing|lyled]ious]ies]ive]es|s|ment)$”, "“processes”)
[("processe®, "s")]|

the star operator

is “greedy”

Stemming Algorithms

* We can also use regular expressions:

r~(.*)(ingllyled|ious|ies|ive]es|s|ment)$"

>>> re.findall(r*~(.*)(ing|lyj]ed]ious]ies]ive]es|s|ment)$", "“processing”)
[("process®, "ing")]

>>> re.findall(r*~2(.*)(ing|lyled]ious]ies]ive]es|s|ment)$”, "“processes”)

[("processe®, "s")]|

>>> re.findall(r*~(.*?)(ing]lyjed]ious|ies]ive]es|s|ment)$”, "processes”)
[("process®, "es")]

>>>

Text Mining Project --- Behrang QasemiZadeh ©

Stemming Algorithms

* We can also use regular expressions:

r~(.*)(ingllyled|ious|ies|ive]es|s|ment)$"

>>> re.findall(r*~(.*)(ing|lyj]ed]ious]ies]ive]es|s|ment)$", "“processing”)
[("process®, "ing")]

>>> re.findall(r*~2(.*)(ing|lyled]ious]ies]ive]es|s|ment)$”, "“processes”)

[("processe®, "s")]|

>>> re.findall(r*~(.*?)(ing]lyjed]ious|ies]ive]es|s|ment)$”, "processes”)
[("process”™, "es")]
>>>

*?is the

“non-greedy”
operator

Stemming Algorithms

* We can also use regular expressions:

r~(.*)(ingllyled|ious|ies|ive]es|s|ment)$"

>>> re.findall(r*~2(.*)(ing|lyled]ious]ies]ive]es|s|ment)$", "“processing”)
[("process™, "ing")]

>>> re.findall(r*~(.*)(ing|lyled]ious]ies]iveles|s|yt)$", "“processes”)
[("processe®, "s")]|

>>> re._findall(r*~(.*?)(ing]lyjed]io Sl " . “processes”)
[("process”™, "es")]

>>> Can you suggest

inputs that result
in false output?

Stemming Algorithms

* NLTK includes several stemmers.

* The Porter and Lancaster stemmers are rule-based algorithms for
stripping affixes.

>>> porter = nltk.PorterStemmer()
>>> lancaster = nltk.LancasterStemmer()
>>> porter.stem("lying')
u“lie”
>>> lancaster.stem("'lying")
"lying-
>>> porter.stem("arguing')
uargu®
>>> lancaster.stem("'arguing™)
fargu”
>>>
Text Mining Project --- Behrang QasemiZadeh ©

Lemmatization using NLTK

* The WordNet lemmatizer can also be used.
* WordNet lemmatizer exploits WordNet dictionary (thus it is slower).

wnl = nltk._WordNetLemmatizer()

>>> wnl.lemmatize('arguing')

"arguing”

>>> wnl.lemmatize(''arguing', pos=u*a”)
"arguing”

>>> wnl.lemmatize(''arguing', pos=u"v")
u-argue®

Text Mining Project --- Behrang QasemiZadeh ©

Text Tokenization

* Tokenization is a challenging task (discussed before)
* For a number of languages, regular expressions are handy tools to
perform tokenization:

>>»> text = 'That U.S.A. poster-print costs $12.40...°
>>> pattern = r'"'(?x) # set flag to allow verbose regexps

([A-Z]\.)+ # abbreviations, e.g. U.S.A.
| \w+(-\w+)* # words with optional internal hyphens
| \$2\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82%
| =Yk # ellipsis
| [1[.,;""2():-_"] # these are separate tokens

>>> nltk.regexp tokenize(text, pattern)
['That', 'U.S.A.', 'poster-print', 'costs', '$12.40', '..."]

Text Mining Project --- Behrang QasemiZadeh ©

Text Tokenization

) . . Use the verbose mode to write more readable regular expressions:
¢ Tokenlzatlon IS 4 Cha”en * Whitespace within the pattern is ignored, use \s instead.

* All characters from the leftmost such '#' through the end of the
line are ignored.

* For a number of languag
perform tokenization:

>>> text = 'That U.S.A. posfer-print costs $12.40...°

>>> pattern = r'"'"'(?x) # set flag to allow verbose regexps
([A-Z]\.)+ # abbreviations, e.g. U.S.A.
| \w+(-\w+)* # words with optional internal hyphens
| \$2\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82%
| \.\. \ # ellipsis
| [1[.,;""2():-_"] # these are separate tokens

>>> nltk.regexp tokenize(text, pattern)
['That', 'U.S.A.', 'poster-print', 'costs', '$12.40', '..."]

Text Tokenization

* Tokenization is a challenging task (discussed before)

* For a number of languages, regular expressions are handy tools to
perform tokenization:

Word Segmentation

* For some writing systems, tokenizing text is made more difficult by
the fact that there is no visual representation of word boundaries.
* We may mark word boundaries in other ways than list of tokens.
* Aresearch challenge on its own!

Generating Outputs: Lists to Strings

* The Join() method can be used to convert lists to strings:

>>> silly = [*We*®, "called®, "him", "Tortoise®, "because®, "he", "taught®, "us®, ".°

>>> " " _join(silly)

"We called him Tortoise because he taught us .-
>>> "*" _join(silly)
"We*called*him*Tortoise*because*he*taught*us*. "
>>>

Text Mining Project --- Behrang QasemiZadeh ©

Formatting Strings

* The print command produce the most human-readable form of an
object.

* Naming the variable at a prompt also shows us a string.

>>> word = 'cat'

>>> sentence = """hello
. world"""

>>> print word

cat

>>> print sentence

hello

world

>>> word

g - %

>>> sentence

"hello\nworld'’

Text Mining Project --- Behrang QasemiZadeh ©

Formatting Strings

* Formatted output, however, is often required to “export” our data:
« Remember the dictionary exercise!

» “String formatting expressions” are used for print formatting:

* The special symbols %s and %d are placeholders for strings and (decimal)
integers.

* The %s and %d symbols are called “conversion specifiers”.
* The string containing conversion specifiers is called a “format string”.

* The % operator and a tuple of values are combined to create a complete string
formatting expression.

>>> '¥s->%d;"' % ('cat’, 3)
‘cat->3;"

Formatting Strings

* Formatted output, however, is often required to “export” our data:
« Remember the dictionary exercise!

» “String formatting expressions” are used for print formatting:

* The special symbols %s and %d are placeholders for strings and (decimal)
integers.

* The %s and %d symbols are called “conversion specifj
* The string containing conversion specifie

* The % operator and a tuple of vals
formatting expression.

rs”

Important application in
tabulated data generation

>>> 'ks->kd;" % ('cat’, 3)
‘cat->3;"

Writing Results to Files (reminder)

>>> output file = open('output.txt', 'w')
>>> words = set(nltk.corpus.genesis.words('english-kjv.txt"))
>>> for word in sorted(words):

output file.write(word + "\n")

* Remember to convert non-text data to text data before writing it into
a file using str().

Text Mining Project --- Behrang QasemiZadeh ©

Text Wrapping

* Python’s textwrap module can be used for wrapping lines:

>>> from textwrap import fill

>>> format = '%s (%d).'

>>> pieces = [format % (word, len(word)) for word in saying]
>»>»> output = ' '.join(pieces)

>>> wrapped = fill(output)

»>»> print wrapped

Text Mining Project --- Behrang QasemiZadeh ©

summary

* We know more about accessing raw text strings and processing it.

* We are able to use Regular Expressions for a number of tasks:
* Tokenization
* Stemming
* At the token level for information extraction

* We now have an idea of stemming and lemmatization

Next Session

* For the next session, we cover chapter 4 of Natural Language
Processing with Python to review basics such:
* Designing algorithms
e Structured Programming
* Looking into a few Python libraries

* We will have a deeper look into NLTK’s ConditionalFregDist()

* We discuss proposed project titles
* If you have your own title, please be ready to provide an overview, i.e.

* What is the problem?
* Why is it important?
* What kind of result do you expect from you project work?

