Text Mining
Project/Lab

Behrang QasemiZadeh

behrangatoffice@gmail.com

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. (©) OO

Text Mining Project --- Behrang QasemiZadeh ©

Information Extraction

Motivation

e With the invention of WWW, the amount of accessible electronic text
IS soaring.

* If you have a question, it is highly likely that someone has written its
answer somewhere.

* The goal of information extraction is to help you find information you
are looking for from this gigantic amount of text.

* But considering the complexity and ambiguity of text, how can we
achieve this goal?

Motivation

* One way is come up with a general framework for the representation
of the meaning in natural language text:
* Is it really possible, considering the complexity and ambiguity of natural
language?
* Another way is to focus on limited set of questions:
* Who is married with whom?
 Where is a company located?
 What is the capital of Bavaria?

* The latter seems more feasible, does not it?

Goal

* How can we extract structured data, such as tables, from
unstructured text?

* What are the common methods for identifying entities and their
relationships in text?

* Which corpora are available for this task, and how they can be used
for training and evaluating classifiers to perform information
extraction?

Introduction

* We are often interested in information represented as structured data

Organization Location
Omnicom New York
DDB Needham New York
Kaplan Thaler Group New York
BBDO South Atlanta
Georgia-Pacific Atlanta

* The structured data in the table above can be simply presented as a
list of tuples: (entity, relation, entity)

Introduction

* If this data is presented as a list of tuples, then it is easy to answer
guestions such as
“Which organizations operate in Atlanta?”

>>> locs = [("Omnicom®™, "IN", "New York"®),
("DDB Needham®", "IN*", “New York"),
("Kaplan Thaler Group®, "IN", "New York"),
("BBDO South®", "IN", "Atlanta"’),
("Georgia-Pacific®, "IN", "Atlanta®)]
>>> query = [el for (el, rel, e2) in locs 1T e2=="Atlanta"]
>>> print{query)
["BBDO South®, "Georgia-Pacific"]

Text Mining Project --- Behrang QasemiZadeh ©

Introduction

* Now assume that instead of the previous table we have this text:

The fourth Wells account moving to another agency is the packaged paper-products division of
Georgia-Pacific Corp., which arrived at Wells only last fall. Like Hertz and the History Channel, it
is also leaving for an Omnicom-owned agency, the BBDO South unit of BBDO Worldwide. BBDO
South in Atlanta, which handles corporate advertising for Georgia-Pacific, will assume additional
duties for brands like Angel Soft toilet tissue and Sparkle paper towels, said Ken Haldin, a
spokesman for Georgia-Pacific in Atlanta.

* How to make a computer understand the text above to answer the
query “which organizations operate in Atlanta”?

A Practical Solution

* First, convert the unstructured data of natural
language sentences into the structured data.

* Second, use powerful tools for querying structured
data, e.g. SQL, to retrieve this data.

* The steps listed above is the core of information
extraction.

Information Extraction Architecture

raw text (string) sentence
& segmentation

sentences
(list of strings)

tokenization

tokenized sentences
(list of lists of strings)

part of speech]

PoS tagged sentences

(list of list of tuples)

entity

tagging

detection

chunked sentences
(list of trees)

relation
detection

relations
(list of tuples)

Information Extraction Architecture

raw text (string) SONIONCe
& segmentation

sentences
(list of strings)

tokenization

tokenized sentences
(list of lists of strings)

part of speech]

PoS tagged sentences

(list of lis

L of tuples)

entity

Preprocessing

Text Mining Project --- Behrand QasemiZadeh ©

detection

chunked sentences
(list of trees)

relation
detection

relations
(list of tuples)

11

Information Extraction Architecture

PoS tagged sentences
(list of list of tuples)

sentence

raw text (string) segmentation

entity
detection

sentences

(list of strings) chunked sentences
(list of trees)
[tokenization] [relation]
Antarntinn

>>> pmport nltk, re, pprint
>>> def 1e_preprocess(document):

sentences = nltk.sent tokenize(document)
sentences = [nltk.word tokenize(sent) for sent in sentences]
sentences = [nltk.pos tag(sent) for sent in sentences]

return sentences

Information Extraction Architecture

raw text (string) sentence
& segmentation

sentences
(list of strings)

tokenization

tokenized sentences
(list of lists of strings)

part of speech]

PoS tagged sentences

(list of list of tuples)

entity

detection

(list of trees)

relation
detection

tagging

Text Mining Project --- Behrang QasemiZadeh ©

v

relations
(list of tuples)

13

Chunking

* A chunker segments and labels multi-token sequences as one group.
* Each of these multi-token sequences are called a chunk.
e Each chunk has a particular grammatical function.

W e s aw t h e y el 1 ow d og
PRP VBD DT J] NN

NP NP

Text Mining Project --- Behrang QasemiZadeh ©

Noun Phrase Chunking

* NP-chunking (noun phrase chunking) is the process of finding
smallest chunks that form a noun phrase:

The market for system-management software for Digital's hardware is fragmented
enough that a giant such as Computer Associates should do well there.

[The/DT market/NN] for/IN [system-management/NN software/NN] for/IN
[Digital/NNP] ['s/POS hardware/NN] is/VBZ fragmented/J) enough/RB that/IN

[a/DT giant/NN] such/JJ as/IN [Computer/NNP Associates/NNPS] should/MD
do/VB well/RB there/RB ./.

Building an NP-Chunker

* To perform the NP-Chunking task, we can use PoS tags and a set of
chunking rules (tag patterns):

>>> grammar = "NP: {<DT>?<JJ>*<NN>}*
>>> cp = nltk.RegexpParser(grammar)

Building an NP-Chunker

* To perform the NP-Chunking task, we can use PoS tags and a set of
chunking rules (tag patterns):

>>> grammar = "NP: {<DT>?<JJ>*<NN>}*
>>> cp = nltk.RegexpParser(grammar)

>>> sentence = [('the', "DT™), (C'hittle™, "33, (Cyellow”, "JJ7), \
('dog’, "NN'), ('barked™, *vBD'), (Tat', "IN), ('the', "DT™), (‘cat', "NN')]
>>> result = cp.parse(sentence)
>>> print(result)
(S (NP thesDT little/JJd yellow/JJ dog/NN) barked/VBD at/IN (NP the/DT cat/NN))

Text Mining Project --- Behrang QasemiZadeh © 17

Building an NP-Chunker

* To perform the NP-Chunking task, we can use PoS tags and a set of
chunking rules (tag patterns):

>>> grammar = "NP: {<DT>?<JJ>*<NN>}*
>>> cp = nltk.RegexpParser(grammar)

>>> sentence = [(the™, "DT™), C'little”, "JJ7), Cvyellow", "JJ7), \
('dog", NN, (“'barked', "vBD"), (Tat', "IN"), ('the', "DT'), (“"cat', "NN')]
>>> result = cp.parse(sentence)

>>> print(result)
(S (NP thesDT little/JJd yellow/JJ dog/NN) barked/VBD at/IN (NP the/DT cat/NN))

>>> result.draw()

Text Mining Project --- Behrang QasemiZadeh © 18

Building an NP-Chunker

* To perform the NP-Chunking task, we can use PoS tags and a set of
chunking rules (tag patterns):

>>> grammar = "NP: {<DT>?<JJ>*<NN>}*
>>> cp = nltk.RegexpParser(grammar)

>>> sentence = [(the™, "DT™), C'little”, "JJ7), Cvyellow", "JJ7), \
('dog", NN, (“'barked', "vBD"), (Tat', "IN"), ('the', "DT'), (“"cat', "NN')]
>>> result = cp.parse(sentence)

>>> print(result)
(S (NP thesDT little/JJd yellow/JJ dog/NN) barked/VBD at/IN (NP the/DT cat/NN))

>>> result.draw()

Text Mining Project --- Behrang QasemiZadeh © 19

Building an NP-Chunker

S
_ [B
NP VBD IN NP

DT JJ JJ NN barked at DT NN

I N |

the little yellow dog the cat

>>> result.draw()

Exercise

* Refine the employed tag pattern in the previous example to cover
other patterns such as:

another/DT sharp/JJ dive/NN

trade/NN figures/NNS

any/DT new/JJ policy/NN measures/NNS

earlier/JJR stages/NNS

Panamanian/JJ dictator/NN Manuel/NNP Noriega/NNP
his/PRP$ Mansion/NNP House/NNP speech/NN
the/DT price/NN cutting/VBG

Exercise

* Refine the employed tag pattern in the previous example to cover
other patterns such as:

another/DT sharp/JJ dive/NN

trade/NN figures/NNS

any/DT new/JJ policy/NN measures/NNS

earlier/JJR stages/NNS

Panamanian/JJ dictator/NN Manuel/NNP Noriega/NNP
his/PRP$ Mansion/NNP House/NNP speech/NN
the/DT price/NN cutting/VBG

Similar to the practice
we did for PoS taggin

22

Chinking instead of Chunking

* Sometimes, it is easier to say what we do not want, instead of stating
what we want!

* Chinking is the process of removing a sequence of tokens from a chunk:

* We can alter the definition of chunk patterns to get rid of what we
do not want.

grammar = r
NP: {<.*>+} # Chunk everything
}<VBD| IN>+{ # Chink sequences of VBD and IN """

Text Mining Project --- Behrang QasemiZadeh © 23

Chunk Representation

* Chunks can be presented/seen both using tags and trees.
* However, the OB tags are most common representation:

* | (inside), O (outside), or B (begin).

We PRP B-NP
saw VBD O
the DT B-NP
yellow JJ I-NP
dog NN I-NP

W e

PRP
B-NP

S da Ww

VBD
0

t h e

DT
B-NP

y el 1l ow

JJ
I-NP

d o g

NN
I-NP

NP

W

2]

NP

Reading IOB Format in CoNLL 2000 Corpus

* The CoNLL 2000 corpus contains 270k words of Wall Street
Journal text.

* The corpus is divided into "train" and "test" portions.

* Each part is annotated with part-of-speech tags and chunk
tags in the |OB format.

Reading IOB Format in CoNLL 2000 Corpus

>>> Trom nltk.corpus import conl12000
>>> print(conl12000.chunked_sents("train.txt")[99])

(S
(PP Over/IN)
(NP a/DT cup/NN)
(PP of/IN) (NP coffee/NN)
./,
(NP Mr./NNP Stone/NNP)
(VP told/VBD)
(NP his/PRP$ story/NN)
/)

Text Mining Project --- Behrang QasemiZadeh ©

Reading IOB Format in CoNLL 2000 Corpus

>>> print(conl12000.chunked_sents("train.txt", chunk_ types=["NP"][99])

(S
Over/IN

(NP a/DT cup/NN)
of/IN

(NP coffee/NN)

/

(NP Mr./NNP Stone/NNP)
told/VBD

(NP his/PRP$ story/NN)
/)

Text Mining Project --- Behrang QasemiZadeh © 27

Simple Evaluation and Baselines

e Let’s use CoNLL200(g ion of the rule-based

chunker we deve This means that 43%

of words are tagged
>>> from nltk.corp with O, i.e. not in an

>>> cp = nltk.Regex} NP chunk!
>>> test_sents =

>>> print(cp.evaluate(te :
ChunkParse score: But the tagger could

I0B Accuracy: 43.4% :

Recall: 0.0% so the precision and
F-Measure: 0.0%

chunk_types=["NP"])

recall is 0.0!

Simple Evaluation and Baselines

* Let’s try a simple regular expression pattern

>>> grammar = r''‘NP: {<[CDJNP].*>+}"
>>> cp = nltk.RegexpParser(grammar)
>>> print(cp.evaluate(test sents))
ChunkParse score:
I0B Accuracy: 87.7%
Precision: 70.6%
Recall: 67.8%
F-Measure: 69.2%

Not too bad for
a simple

pattern, ha?!

Training Classifier-Based Chunkers

* Even if we define an elaborated set of patter Similar PoS
still may not be the best method for chunking sequence but

different chunks!

Joey/NN sold/VBD the/DT farmer/NN rice/NN ./.

Nick/NN broke/VBD my/DT computer/NN monitor/NN ./.

e We can use data-driven techniques (similar to what we used for PoS
tagger development) to develop chunkers.

class ConsecutiveNPChunkTagger(nltk.Taggerl):
def init_ (self, train_sents):
train_set = []
for tagged sent in train_sents:
untagged _sent = nltk.tag.untag(tagged sent)
history = []
for 1, (word, tag) in enumerate(tagged sent):
featureset = npchunk features(untagged sent, 1, history)
train_set.append((featureset, tag))
history.append(tag)
self.classifier = nltk.MaxentClassifTier.train(
train_set, algorithm="megam®, trace=0)

det tag(self, sentence):
history = []
for 1, word in enumerate(sentence):
featureset = npchunk features(sentence, i1, history)
tag = self.classifier.classifty(featureset)
history.append(tag)
return zip(sentence, history)

Text Mining Project --- Behrang QasemiZadeh © 31

class ConsecutiveNPChunkTagger(nltk.Taggerl):
def 1nit_ (self, train_sents):
train_set = []
for tagged sent in train_sents:
untagged sent = nltk.tag.untag(tagged sent)
history = []
for 1, (word, tag) in enumerate(tagged sent):
featureset = npchunk features(untagged sent, 1, history)
train_set.append((featureset, tag))
history.append(tag)
self._classifier = nltk.MaxentClassifier.train(
train_set, algorithm="megam®, trace=0)

deft tag(self, sentence):
history = [

for

http://www.nltk.org/book/pylisting/code classifier chunker.py

retu

Text Mining Project --- Behrang QasemiZadeh © 32

indication of inheritance

class ConsecutiveNPChunkTagger(nltk.Taggerl):
def init_ (self, train_sents):
train_set = []
for tagged sent in train_sents:
untagged _sent = nltk.tag.untag(tagged sent)
history = []
for 1, (word, tag) in enumerate(tagged sent):
featureset = npchunk features(untagged sent, 1, history)
train_set.append((featureset, tag))
history.append(tag)
self.classifier = nltk.MaxentClassifTier.train(
train_set, algorithm="megam®, trace=0)

def tag(self, sentence):
history = []
for 1, word in enumerate(sentence):
featureset = npchunk features(sentence, i1, history)
tag = self.classifier.classifty(featureset)
history.append(tag)
return zip(sentence, history)

class ConsecutiveNPChunkTagger(nltk.Taggerl):
def 1nit (self, train_sents):
train_set = []
for tagged sent in train_sents:
untagged _sent = nltk.tag.untag(tagged sent)
history = []
class or 1, (word, tag) in enumerate(tagged sent):
instantiation featureset = npchunk features(untagged sent, i, history)
invokes train_set.append((featureset, tag))
init history.append(tag)
N self.classifier = nltk.MaxentClassifier.train(
train_set, algorithm="megam®, trace=0)

deft tag(self, sentence):
history = []
for 1, word in enumerate(sentence):
featureset = npchunk features(sentence, i1, history)
tag = self.classifier.classify(featureset)
history.append(tag)
return zip(sentence, history)

class ConsecutiveNPChunkTagger(nltk.Taggerl):
def 1nit_ (self, train_sents):
train_set = []
for tagged sent in train_sents:
untagged _sent = nltk.tag.
history = []
for 1, (word, tag) in enumerate(tagged sent):
featureset = npchunk features(untagged sent, 1, history)
train_set.append((featureset, tag))
history.append(tag)
self.classifier = nltk.MaxentClassifTier.train(
train_set, algorithm="megam®, trace=0)

to provide the
appropriate history to
the feature extractor

deft tag(self, sentence):
history = []
for 1, word in enumerate(sentence):
featureset = npchunk features(sentence, i1, history)
tag = self.classifier.classifty(featureset)
history.append(tag)
return zip(sentence, history)

class ConsecutiveNPChunkTagger(nltk.Taggerl):
def 1nit (self, train_sents):
train_set = []
for tagged sent in train_sents:
untagged _sent = nltk.tag.untag(tagged sent)
history = []
or 1, (word, tag) in enumerate(tagged _sent):
. featureset = npchunk features(untagged sent, i1, history)
instance of the train_set.append((featureset, tag))
object itself history.append(tag)
self._classifier = nltk.MaxentClassifTier.train(
train_set, algorithm="megam®, trace=0)

To indelicate

deft tag(self, sentence):
history = []
for 1, word in enumerate(sentence):
featureset = npchunk features(sentence, i1, history)
tag = self.classifier.classify(featureset)
history.append(tag)
return zip(sentence, history)

class ConsecutiveNPChunkTagger(nltk.Taggerl):
def init_ (self, train_sents):
train_set = []
for tagged sent in train_sents:
untagged _sent = nltk.tag.untag(tagged sent)
history = []
for 1, (word, tag) in enumerate(tagged sent):
featureset = npchunk features(untagged sent, 1, history)
train_set.append((featureset, tag))
history.append(tag)
self.classifier = nltk.MaxentClassifTier.train(

train_set, trace=0) Use Maximum

Entropy

def tag(self, sentence): classifier
history = []
for 1, word in enumerate(sentence):
featureset = npchunk features(sentence, i1, history)
tag = self.classifier.classifty(featureset)
history.append(tag)
return zip(sentence, history)

class ConsecutiveNPChunkTagger(nltk.Taggerl):
def init_ (self, train_sents):
train_set = []
for tagged sent in train_sents:
untagged _sent = nltk.tag.untag(tagged sent)
history = []
for 1, (word, tag) in enumerate(tagged sent):
featureset = npchunk features(untagged sent, 1, history)
train_set.append((featureset, tag))
history.append(tag)
self-clas§ifier = nItk:MaxeTtCIas?ifier-train(And, this is the
train_set, algorithm="megam®, trace=0)
method to be
def tag(self, sentence): used for
history = [] chunking
for 1, word in enumerate(sentence):
featureset = npchunk features(sentence, i1, history)
tag = self.classifier.classifty(featureset)
history.append(tag)
return zip(sentence, history)

Simple Feature Extraction

Only the part-of-
speech tag of the
current token

>>> deT npchunk_features(sentence, 1, history):
word, pos = sentence|i]
return {"'pos": pos}

>>> chunker = ConsecutiveNPChunker(train_sents)

>>> print(chunker.evaluate(test sents))
ChunkParse score:

I0B Accuracy: 92.9%

Precision: 79.9%

Recall: 86.8%

F-Measure: 83.2%

Simple Feature Extraction

>>> deT npchunk_features(sentence, 1, history):
word, pos = sentence|i]

SF i == Also, add the
prevword, prevpos = "<START>", "<START>" current word and
else- the PoS of the

prevword, prevpos = sentence[i1-1] previous wor

return {"'pos'': pos, "‘word': word, "'‘prevpos'': prevpos}

>>> chunker = ConsecutiveNPChunker(train_sents)

>>> print(chunker.evaluate(test _sents))
ChunkParse score:

10B Accuracy: 94.5%

Precision: 84.2%

Recall: 89.4%

F-Measure: 86.7%

>>> def npchunk features(sentence, 1, history):
word, pos = sentence[i]
it 1 == 0:
prevword, prevpos = "'<START>", "<START>"

else:
prevword, prevpos = sentencel[i-1]}
1T 1 == len(sentence)-1:
nextword, nextpos = "<END>", "'<END>* Also, include
else: i more complex
nextword, nextpos = sentencel[i+1] context features!
return {
"pos'": pos, "‘word": word, " 'prevpos'': prevpos,
“"nextpos'': nextpos, ‘‘prevpos+pos’: "%s+%s"™ %(prevpos, pos),
"postnextpos': "Ws+%s'" % (pos, nextpos),

"tags-since-dt": tags_since dt(sentence, 1)}

ChunkParse score:
I0B Accuracy: 96.0%
Precision: 88.6%
Recall: 91.0%

—_ - 0
Text Mining Project --- Behrang QasemiZadeh © F Measu re: 89 = 8 /0 41

Nested Structure with Cascaded Chunkers

* It is possible to build chunk structures of arbitrary depth.

* To do so, we can use a multi-stage chunk grammar containing

recursive rules:
* For a chunker based on regular expressions, this means that we need to

change our RegEx pattern:

grammar = r
NP: {<DT]JJ|NN.*>+} # Chunk sequences of DT, JJ, NN

PP: {<IN><NP>} # Chunk prepositions followed by NP
VP: {<VB.*><NP|PP|CLAUSE>+$} # Chunk verbs and their arguments

CLAUSE: {<NP><VP>} # Chunk NP, VP

Text Mining Project --- Behrang QasemiZadeh © 42

Trees

* Tree a set of connected
labelled nodes each
reachable by a unique path
from a distinguished root
node, i.e. is an acyclic
graph.

 Nodes are often referred to
by terms parent, child and
sibling.

Text Mining Project --- Behrang QasemiZadeh ©

S
.-"’f/\\
NP VP
| N
Alice ' NP

LN

chased Det M

the rabbit

43

Trees

* In NLTK, a tree is created using a node label and a list of children (list):

>>>
>>>
(NP
>>>
>>>
(NP

treel = nltk.Tree(°"NP", ["Alice"])

print(treel)
Alice)

tree2 = nltk.Tree("NP", ["the", "rabbit"])

print(tree2)
the rabbit)

Text Mining Project --- Behrang QasemiZadeh ©

44

Trees

* A tree of an arbitrary depth can then be created in a recursively:

>>> tree3d = nltk.Tree("VP", ["chased®, tree2])

>>> treed4 = nltk.Tree("S", [treel, tree3]) 000 XN
>>> print(treed) file Zoom
(S (NP Alice) (VP chased (NP the rabbit))) VF

Saw NP

>>> tree3.draw()
the man

Text Mining Project --- Behrang QasemiZadeh © 45

Tree Traversal

* An easy way to traverse a tree is to use a recursive function:

def traverse(t): See how we check tTis
try:) tree and encode the

t.label O termination of the
except AttributeError: function with handling

print(t, end=" ") the exception !
else: # Now we know that t.node i1s defined

print("(", t.label(), end=" ")
for child in t:

traverse(child) print(")", end=" ")

>>> t = nltk.Tree("(S (NP Alice) (VP chased (NP the rabbit)))")
>>> traverse(t)

(S (NP Alice) (VP chased (NP the rabbit)))

