Text Mining Project/Lab

Behrang QasemiZadeh

behrangatoffice@gmail.com

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Information Extraction

Motivation

- With the invention of WWW, the amount of accessible electronic text is soaring.
- If you have a question, it is highly likely that someone has written its answer somewhere.
- The goal of information extraction is to help you find information you are looking for from this gigantic amount of text.
- But considering the complexity and ambiguity of text, how can we achieve this goal?

Motivation

- One way is come up with a general framework for the representation of the meaning in natural language text:
 - Is it really possible, considering the complexity and ambiguity of natural language?
- Another way is to focus on limited set of questions:
 - Who is married with whom?
 - Where is a company located?
 - What is the capital of Bavaria?
- The latter seems more feasible, does not it?

Goal

- How can we extract structured data, such as tables, from unstructured text?
- What are the common methods for identifying entities and their relationships in text?
- Which corpora are available for this task, and how they can be used for training and evaluating classifiers to perform information extraction?

Introduction

• We are often interested in information represented as structured data

Organization	Location
Omnicom	New York
DDB Needham	New York
Kaplan Thaler Group	New York
BBDO South	Atlanta
Georgia-Pacific	Atlanta

• The structured data in the table above can be simply presented as a list of tuples: (entity, relation, entity)

Introduction

 If this data is presented as a list of tuples, then it is easy to answer questions such as

"Which organizations operate in Atlanta?"

Introduction

• Now assume that instead of the previous table we have this text:

The fourth Wells account moving to another agency is the packaged paper-products division of Georgia-Pacific Corp., which arrived at Wells only last fall. Like Hertz and the History Channel, it is also leaving for an Omnicom-owned agency, the BBDO South unit of BBDO Worldwide. BBDO South in Atlanta, which handles corporate advertising for Georgia-Pacific, will assume additional duties for brands like Angel Soft toilet tissue and Sparkle paper towels, said Ken Haldin, a spokesman for Georgia-Pacific in Atlanta.

 How to make a computer understand the text above to answer the query "which organizations operate in Atlanta"?

A Practical Solution

- First, convert the unstructured data of natural language sentences into the structured data.
- Second, use powerful tools for querying structured data, e.g. SQL, to retrieve this data.
- The steps listed above is the core of information extraction.

Chunking

- A **chunker** segments and labels multi-token sequences as one group.
- Each of these multi-token sequences are called a chunk.
- Each chunk has a particular grammatical function.

Noun Phrase Chunking

• NP-chunking (noun phrase chunking) is the process of finding smallest chunks that form a noun phrase:

The market for system-management software for Digital's hardware is fragmented enough that a giant such as Computer Associates should do well there.

```
[ The/DT market/NN ] for/IN [ system-management/NN software/NN ] for/IN [ Digital/NNP ] [ 's/POS hardware/NN ] is/VBZ fragmented/JJ enough/RB that/IN [ a/DT giant/NN ] such/JJ as/IN [ Computer/NNP Associates/NNPS ] should/MD do/VB well/RB there/RB ./.
```

```
>>> grammar = "NP: {<DT>?<JJ>*<NN>}"
>>> cp = nltk.RegexpParser(grammar)
```

```
>>> grammar = "NP: {<DT>?<JJ>*<NN>}"
>>> cp = nltk.RegexpParser(grammar)

>>> sentence = [("the", "DT"), ("little", "JJ"), ("yellow", "JJ"), \
    ("dog", "NN"), ("barked", "VBD"), ("at", "IN"), ("the", "DT"), ("cat", "NN")]
>>> result = cp.parse(sentence)
>>> print(result)
(S (NP the/DT little/JJ yellow/JJ dog/NN) barked/VBD at/IN (NP the/DT cat/NN))
```


>>> result.draw()

Exercise

 Refine the employed tag pattern in the previous example to cover other patterns such as:

another/DT sharp/JJ dive/NN trade/NN figures/NNS any/DT new/JJ policy/NN measures/NNS earlier/JJR stages/NNS Panamanian/JJ dictator/NN Manuel/NNP Noriega/NNP his/PRP\$ Mansion/NNP House/NNP speech/NN the/DT price/NN cutting/VBG

Exercise

 Refine the employed tag pattern in the previous example to cover other patterns such as:

another/DT sharp/JJ dive/NN trade/NN figures/NNS any/DT new/JJ policy/NN measures/NNS earlier/JJR stages/NNS Panamanian/JJ dictator/NN Manuel/NNP Noriega/NNP his/PRP\$ Mansion/NNP House/NNP speech/NN the/DT price/NN cutting/VBG

Chinking instead of Chunking

- Sometimes, it is easier to say what we do not want, instead of stating what we want!
- Chinking is the process of removing a sequence of tokens from a chunk:
 - We can alter the definition of chunk patterns to get rid of what we do not want.

```
grammar = r"""

NP: {<.*>+} # Chunk everything
}<VBD|IN>+{ # Chink sequences of VBD and IN """
```

Chunk Representation

- Chunks can be presented/seen both using tags and trees.
- However, the IOB tags are most common representation:
 - I (inside), O (outside), or B (begin).

We PRP B-NP saw VBD O the DT B-NP yellow JJ I-NP dog NN I-NP

Reading IOB Format in CoNLL 2000 Corpus

- The CoNLL 2000 corpus contains 270k words of Wall Street Journal text.
- The corpus is divided into "train" and "test" portions.
- Each part is annotated with part-of-speech tags and chunk tags in the IOB format.

Reading IOB Format in CoNLL 2000 Corpus

```
>>> from nltk.corpus import conll2000
>>> print(conll2000.chunked_sents('train.txt')[99])
(S
      (PP Over/IN)
      (NP a/DT cup/NN)
      (PP of/IN) (NP coffee/NN)
      ./.
      (NP Mr./NNP Stone/NNP)
      (VP told/VBD)
      (NP his/PRP$ story/NN)
      ./.)
```

Reading IOB Format in CoNLL 2000 Corpus

```
>>> print(conll2000.chunked_sents('train.txt', chunk_types=['NP'])[99])
(S
      Over/IN
      (NP a/DT cup/NN)
      of/IN
      (NP coffee/NN)
      ./.
      (NP Mr./NNP Stone/NNP)
      told/VBD
      (NP his/PRP$ story/NN)
      ./.)
```

Simple Evaluation and Baselines

```
tion of the rule-based

    Let's use CoNLL2000

                       This means that 43%
  chunker we devel
                        of words are tagged
                        with O, i.e. not in an
>>> from nltk.corp
                             NP chunk!
>>> cp = nltk.Regex
>>> test sents = conll.
                                                       chunk types=['NP'])
>>> print(cp.evaluate(te
                              4
ChunkParse score:
                                    But the tagger could
      IOB Accuracy: 43.4%
                                   not find any NP chunk
      Precision: 0.0%
                                    so the precision and
      Recall: 0.0%
      F-Measure: 0.0%
                                        recall is 0.0!
```

Simple Evaluation and Baselines

• Let's try a simple regular expression pattern

```
>>> grammar = r"NP: {<[CDJNP].*>+}"
>>> cp = nltk.RegexpParser(grammar)
>>> print(cp.evaluate(test_sents))
ChunkParse score:
      IOB Accuracy: 87.7%
      Precision: 70.6%
      Recall: 67.8%
                               Not too bad for
      F-Measure: 69.2%
                                  a simple
                                pattern, ha?!
```

Training Classifier-Based Chunkers

 Even if we define an elaborated set of pattern still may not be the best method for chunking Similar PoS sequence but different chunks!

Joey/NN sold/VBD the/DT farmer/NN rice/NN ./.

Nick/NN broke/VBD my/DT computer/NN monitor/NN ./.

 We can use data-driven techniques (similar to what we used for PoS tagger development) to develop chunkers.

```
class ConsecutiveNPChunkTagger(nltk.TaggerI):
   def __init__(self, train sents):
      train set = []
      for tagged sent in train sents:
            untagged sent = nltk.tag.untag(tagged sent)
            history = []
            for i, (word, tag) in enumerate(tagged sent):
                   featureset = npchunk features(untagged sent, i, history)
                   train set.append( (featureset, tag) )
                   history.append(tag)
            self.classifier = nltk.MaxentClassifier.train(
                   train set, algorithm='megam', trace=0)
   def tag(self, sentence):
      history = []
      for i, word in enumerate(sentence):
            featureset = npchunk_features(sentence, i, history)
            tag = self.classifier.classify(featureset)
            history.append(tag)
      return zip(sentence, history)
                              Text Mining Project --- Behrang QasemiZadeh ©
                                                                            31
```

```
class ConsecutiveNPChunkTagger(nltk.TaggerI):
  def init (self, train sents):
      train set = []
      for tagged sent in train sents:
            untagged sent = nltk.tag.untag(tagged sent)
            history = []
            for i, (word, tag) in enumerate(tagged sent):
                  featureset = npchunk features(untagged sent, i, history)
                  train set.append( (featureset, tag) )
                  history.append(tag)
            self.classifier = nltk.MaxentClassifier.train(
                  train set, algorithm='megam', trace=0)
  def tag(self, sentence):
      history = []
      for
            http://www.nltk.org/book/pylisting/code_classifier_chunker.py
      retu
```

Text Mining Project --- Behrang QasemiZadeh ©

indication of inheritance

```
class ConsecutiveNPChunkTagger(nltk.TaggerI):
  def __init__(self, train sents):
      train set = []
      for tagged sent in train sents:
            untagged sent = nltk.tag.untag(tagged sent)
            history = []
            for i, (word, tag) in enumerate(tagged sent):
                  featureset = npchunk features(untagged sent, i, history)
                  train set.append( (featureset, tag) )
                  history.append(tag)
            self.classifier = nltk.MaxentClassifier.train(
                  train set, algorithm='megam', trace=0)
  def tag(self, sentence):
      history = []
      for i, word in enumerate(sentence):
            featureset = npchunk_features(sentence, i, history)
            tag = self.classifier.classify(featureset)
            history.append(tag)
      return zip(sentence, history)
                                                                         33
```

```
class ConsecutiveNPChunkTagger(nltk.TaggerI):
    def __init__(self, train_sents):
       train set = []
       for tagged sent in train sents:
              untagged sent = nltk.tag.untag(tagged sent)
             history = []
   class
              for i, (word, tag) in enumerate(tagged sent):
instantiation
                    featureset = npchunk features(untagged sent, i, history)
                    train set.append( (featureset, tag) )
  invokes
                    history.append(tag)
   init
              self.classifier = nltk.MaxentClassifier.train(
                    train set, algorithm='megam', trace=0)
    def tag(self, sentence):
       history = []
       for i, word in enumerate(sentence):
              featureset = npchunk_features(sentence, i, history)
              tag = self.classifier.classify(featureset)
             history.append(tag)
       return zip(sentence, history)
                               Text Mining Project --- Behrang QasemiZadeh ©
                                                                             34
```

```
class ConsecutiveNPChunkTagger(nltk.TaggerI):
   def __init__(self, train sents):
      train set = []
                                                                   to provide the
      for tagged sent in train sents:
                                                               appropriate history to
            untagged sent = nltk.tag.untag(
                                                                the feature extractor
            history = []
            for i, (word, tag) in enumerate(tagged sent):
                   featureset = npchunk features(untagged sent, i, history)
                   train set.append( (featureset, tag) )
                   history.append(tag)
            self.classifier = nltk.MaxentClassifier.train(
                   train set, algorithm='megam', trace=0)
   def tag(self, sentence):
      history = []
      for i, word in enumerate(sentence):
            featureset = npchunk_features(sentence, i, history)
            tag = self.classifier.classify(featureset)
            history.append(tag)
      return zip(sentence, history)
                              Text Mining Project --- Behrang QasemiZadeh ©
```

```
class ConsecutiveNPChunkTagger(nltk.TaggerI):
    def __init__(self, train sents):
       train set = []
       for tagged sent in train sents:
             untagged sent = nltk.tag.untag(tagged sent)
             history = []
              or i, (word, tag) in enumerate(tagged sent):
 To indelicate
                    featureset = npchunk features(untagged sent, i, history)
instance of the
                    train set.append( (featureset, tag) )
 object itself
                    history.append(tag)
             self.classifier = nltk.MaxentClassifier.train(
                    train set, algorithm='megam', trace=0)
    def tag(self, sentence):
       history = []
       for i, word in enumerate(sentence):
             featureset = npchunk_features(sentence, i, history)
             tag = self.classifier.classify(featureset)
             history.append(tag)
       return zip(sentence, history)
                               Text Mining Project --- Behrang QasemiZadeh ©
                                                                             36
```

```
class ConsecutiveNPChunkTagger(nltk.TaggerI):
   def __init__(self, train sents):
      train set = []
      for tagged sent in train sents:
            untagged sent = nltk.tag.untag(tagged sent)
            history = []
            for i, (word, tag) in enumerate(tagged sent):
                   featureset = npchunk features(untagged sent, i, history)
                   train set.append( (featureset, tag) )
                   history.append(tag)
            self.classifier = nltk.MaxentClassifier.train(
                                                                     Use Maximum
                   train set, trace=0)
                                                                        Entropy
                                                                       classifier
   def tag(self, sentence):
      history = []
      for i, word in enumerate(sentence):
            featureset = npchunk_features(sentence, i, history)
            tag = self.classifier.classify(featureset)
            history.append(tag)
      return zip(sentence, history)
                              Text Mining Project --- Behrang QasemiZadeh ©
```

```
class ConsecutiveNPChunkTagger(nltk.TaggerI):
   def __init__(self, train sents):
      train set = []
      for tagged sent in train sents:
            untagged_sent = nltk.tag.untag(tagged_sent)
            history = []
            for i, (word, tag) in enumerate(tagged sent):
                   featureset = npchunk features(untagged sent, i, history)
                   train set.append( (featureset, tag) )
                   history.append(tag)
            self.classifier = nltk.MaxentClassifier.train(
                                                                  And, this is the
                   train set, algorithm='megam', trace=0)
                                                                  method to be
                                                                     used for
   def tag(self, sentence):
                                                                    chunking
      history = []
      for i, word in enumerate(sentence):
            featureset = npchunk_features(sentence, i, history)
            tag = self.classifier.classify(featureset)
            history.append(tag)
      return zip(sentence, history)
                              Text Mining Project --- Behrang QasemiZadeh ©
                                                                            38
```

Simple Feature Extraction

```
>>> def npchunk features(sentence, i, history):
     word, pos = sentence[i]
      return {"pos": pos}
>>> chunker = ConsecutiveNPChunker(train sents)
>>> print(chunker.evaluate(test sents))
ChunkParse score:
      IOB Accuracy: 92.9%
      Precision: 79.9%
      Recall: 86.8%
      F-Measure: 83.2%
```

Only the part-ofspeech tag of the current token

Simple Feature Extraction

```
>>> def npchunk features(sentence, i, history):
      word, pos = sentence[i]
      if i == 0:
            prevword, prevpos = "<START>", "<START>"
      else:
            prevword, prevpos = sentence[i-1]
      return {"pos": pos, "word": word, "prevpos": prevpos}
>>> chunker = ConsecutiveNPChunker(train sents)
>>> print(chunker.evaluate(test sents))
ChunkParse score:
      IOB Accuracy: 94.5%
      Precision: 84.2%
      Recall: 89.4%
      F-Measure: 86.7%
```

Also, add the current word and the PoS of the previous wor

```
>>> def npchunk features(sentence, i, history):
      word, pos = sentence[i]
       if i == 0:
            prevword, prevpos = "<START>", "<START>"
      else:
            prevword, prevpos = sentence[i-1]
       if i == len(sentence)-1:
            nextword, nextpos = "<END>", "<END>"
                                                                   Also, include
      else:
                                                                  more complex
            nextword, nextpos = sentence[i+1]
                                                                 context features!
      return {
      "pos": pos, "word": word, "prevpos": prevpos,
      "nextpos": nextpos, "prevpos+pos": "%s+%s" %(prevpos, pos),
      "pos+nextpos": "%s+%s" % (pos, nextpos),
      "tags-since-dt": tags since dt(sentence, i)}
                                                 ChunkParse score:
                                                        IOB Accuracy: 96.0%
                                                        Precision: 88.6%
                                                        Recall: 91.0%
```

Text Mining Project --- Behrang QasemiZadeh ©

F-Measure: 89.8% $_{41}$

Nested Structure with Cascaded Chunkers

- It is possible to build chunk structures of arbitrary depth.
- To do so, we can use a multi-stage chunk grammar containing recursive rules:
 - For a chunker based on regular expressions, this means that we need to change our RegEx pattern:

```
grammar = r"""
NP: {<DT|JJ|NN.*>+}  # Chunk sequences of DT, JJ, NN
PP: {<IN><NP>} # Chunk prepositions followed by NP
VP: {<VB.*><NP|PP|CLAUSE>+$} # Chunk verbs and their arguments
CLAUSE: {<NP><VP>} # Chunk NP, VP
```

Trees

- Tree a set of connected labelled nodes each reachable by a unique path from a distinguished root node, i.e. is an acyclic graph.
- Nodes are often referred to by terms parent, child and sibling.

Trees

• In NLTK, a tree is created using a node label and a list of children (list):

```
>>> tree1 = nltk.Tree('NP', ['Alice'])
>>> print(tree1)
(NP Alice)
>>> tree2 = nltk.Tree('NP', ['the', 'rabbit'])
>>> print(tree2)
(NP the rabbit)
```

Trees

• A tree of an arbitrary depth can then be created in a recursively:

```
>>> tree3 = nltk.Tree('VP', ['chased', tree2])
>>> tree4 = nltk.Tree('S', [tree1, tree3])
>>> print(tree4)
(S (NP Alice) (VP chased (NP the rabbit)))
>>> tree3.draw()
```


Tree Traversal

An easy way to traverse a tree is to use a recursive function:

See how we check t is tree and encode the termination of the function with handling the exception!