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Information Extraction



Motivation

e With the invention of WWW, the amount of accessible electronic text
IS soaring.

* If you have a question, it is highly likely that someone has written its
answer somewhere.

* The goal of information extraction is to help you find information you
are looking for from this gigantic amount of text.

* But considering the complexity and ambiguity of text, how can we
achieve this goal?



Motivation

* One way is come up with a general framework for the representation
of the meaning in natural language text:
* Is it really possible, considering the complexity and ambiguity of natural
language?
* Another way is to focus on limited set of questions:
* Who is married with whom?
 Where is a company located?
 What is the capital of Bavaria?

* The latter seems more feasible, does not it?



Goal

* How can we extract structured data, such as tables, from
unstructured text?

* What are the common methods for identifying entities and their
relationships in text?

* Which corpora are available for this task, and how they can be used
for training and evaluating classifiers to perform information
extraction?



Introduction

* We are often interested in information represented as structured data

Organization Location
Omnicom New York
DDB Needham New York
Kaplan Thaler Group New York
BBDO South Atlanta
Georgia-Pacific Atlanta

* The structured data in the table above can be simply presented as a
list of tuples: (entity, relation, entity)



Introduction

* If this data is presented as a list of tuples, then it is easy to answer
guestions such as
“Which organizations operate in Atlanta?”

>>> locs = [("Omnicom®™, "IN", "New York"®),
("DDB Needham®", "IN*", “New York"),
("Kaplan Thaler Group®, "IN", "New York"),
("BBDO South®", "IN", "Atlanta"’),
("Georgia-Pacific®, "IN", "Atlanta®)]
>>> query = [el for (el, rel, e2) in locs 1T e2=="Atlanta"]
>>> print{query)
[ "BBDO South®, "Georgia-Pacific"]
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Introduction

* Now assume that instead of the previous table we have this text:

The fourth Wells account moving to another agency is the packaged paper-products division of
Georgia-Pacific Corp., which arrived at Wells only last fall. Like Hertz and the History Channel, it
is also leaving for an Omnicom-owned agency, the BBDO South unit of BBDO Worldwide. BBDO
South in Atlanta, which handles corporate advertising for Georgia-Pacific, will assume additional
duties for brands like Angel Soft toilet tissue and Sparkle paper towels, said Ken Haldin, a
spokesman for Georgia-Pacific in Atlanta.

* How to make a computer understand the text above to answer the
query “which organizations operate in Atlanta”?



A Practical Solution

* First, convert the unstructured data of natural
language sentences into the structured data.

* Second, use powerful tools for querying structured
data, e.g. SQL, to retrieve this data.

* The steps listed above is the core of information
extraction.
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Information Extraction Architecture
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>>> pmport nltk, re, pprint
>>> def 1e_preprocess(document):

sentences = nltk.sent tokenize(document)
sentences = [nltk.word tokenize(sent) for sent in sentences]
sentences = [nltk.pos tag(sent) for sent in sentences]

return sentences
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Chunking

* A chunker segments and labels multi-token sequences as one group.
* Each of these multi-token sequences are called a chunk.
e Each chunk has a particular grammatical function.

W e s aw t h e y el 1 ow d og
PRP VBD DT J] NN

NP NP
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Noun Phrase Chunking

* NP-chunking (noun phrase chunking) is the process of finding
smallest chunks that form a noun phrase:

The market for system-management software for Digital's hardware is fragmented
enough that a giant such as Computer Associates should do well there.

[The/DT market/NN ] for/IN [ system-management/NN software/NN ] for/IN
[ Digital/NNP ] [ 's/POS hardware/NN ] is/VBZ fragmented/J) enough/RB that/IN

[ a/DT giant/NN ] such/JJ as/IN [ Computer/NNP Associates/NNPS ] should/MD
do/VB well/RB there/RB ./.



Building an NP-Chunker

* To perform the NP-Chunking task, we can use PoS tags and a set of
chunking rules (tag patterns):

>>> grammar = "NP: {<DT>?<JJ>*<NN>}*
>>> cp = nltk.RegexpParser(grammar)



Building an NP-Chunker

* To perform the NP-Chunking task, we can use PoS tags and a set of
chunking rules (tag patterns):

>>> grammar = "NP: {<DT>?<JJ>*<NN>}*
>>> cp = nltk.RegexpParser(grammar)

>>> sentence = [('the', "DT™), (C'hittle™, "33, (Cyellow”, "JJ7), \
('dog’, "NN'), ('barked™, *vBD'), (Tat', "IN), ('the', "DT™), (‘cat', "NN')]
>>> result = cp.parse(sentence)
>>> print(result)
(S (NP thesDT little/JJd yellow/JJ dog/NN) barked/VBD at/IN (NP the/DT cat/NN))
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Building an NP-Chunker

* To perform the NP-Chunking task, we can use PoS tags and a set of
chunking rules (tag patterns):

>>> grammar = "NP: {<DT>?<JJ>*<NN>}*
>>> cp = nltk.RegexpParser(grammar)

>>> sentence = [(the™, "DT™), C'little”, "JJ7), Cvyellow", "JJ7), \
('dog", NN, (“'barked', "vBD"), (Tat', "IN"), ('the', "DT'), (“"cat', "NN')]
>>> result = cp.parse(sentence)

>>> print(result)
(S (NP thesDT little/JJd yellow/JJ dog/NN) barked/VBD at/IN (NP the/DT cat/NN))

>>> result.draw()
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Building an NP-Chunker

* To perform the NP-Chunking task, we can use PoS tags and a set of
chunking rules (tag patterns):

>>> grammar = "NP: {<DT>?<JJ>*<NN>}*
>>> cp = nltk.RegexpParser(grammar)

>>> sentence = [(the™, "DT™), C'little”, "JJ7), Cvyellow", "JJ7), \
('dog", NN, (“'barked', "vBD"), (Tat', "IN"), ('the', "DT'), (“"cat', "NN')]
>>> result = cp.parse(sentence)

>>> print(result)
(S (NP thesDT little/JJd yellow/JJ dog/NN) barked/VBD at/IN (NP the/DT cat/NN))

>>> result.draw()
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Building an NP-Chunker

S
_ [ B
NP VBD IN NP

DT JJ JJ NN barked at DT NN

I N |

the little yellow dog the cat

>>> result.draw()




Exercise

* Refine the employed tag pattern in the previous example to cover
other patterns such as:

another/DT sharp/JJ dive/NN

trade/NN figures/NNS

any/DT new/JJ policy/NN measures/NNS

earlier/JJR stages/NNS

Panamanian/JJ dictator/NN Manuel/NNP Noriega/NNP
his/PRP$ Mansion/NNP House/NNP speech/NN
the/DT price/NN cutting/VBG



Exercise

* Refine the employed tag pattern in the previous example to cover
other patterns such as:

another/DT sharp/JJ dive/NN

trade/NN figures/NNS

any/DT new/JJ policy/NN measures/NNS

earlier/JJR stages/NNS

Panamanian/JJ dictator/NN Manuel/NNP Noriega/NNP
his/PRP$ Mansion/NNP House/NNP speech/NN
the/DT price/NN cutting/VBG

Similar to the practice
we did for PoS taggin

22




Chinking instead of Chunking

* Sometimes, it is easier to say what we do not want, instead of stating
what we want!

* Chinking is the process of removing a sequence of tokens from a chunk:

* We can alter the definition of chunk patterns to get rid of what we
do not want.

grammar = r
NP: {<.*>+} # Chunk everything
}<VBD| IN>+{ # Chink sequences of VBD and IN """
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Chunk Representation

* Chunks can be presented/seen both using tags and trees.
* However, the OB tags are most common representation:

* | (inside), O (outside), or B (begin).

We PRP B-NP
saw VBD O
the DT B-NP
yellow JJ I-NP
dog NN I-NP

W e

PRP
B-NP

S da Ww

VBD
0

t h e

DT
B-NP

y el 1l ow

JJ
I-NP

d o g

NN
I-NP

NP

W

2]

NP




Reading IOB Format in CoNLL 2000 Corpus

* The CoNLL 2000 corpus contains 270k words of Wall Street
Journal text.

* The corpus is divided into "train" and "test" portions.

* Each part is annotated with part-of-speech tags and chunk
tags in the |OB format.



Reading IOB Format in CoNLL 2000 Corpus

>>> Trom nltk.corpus import conl12000
>>> print(conl12000.chunked_sents("train.txt")[99])

(S
(PP Over/IN)
(NP a/DT cup/NN)
(PP of/IN) (NP coffee/NN)
./,
(NP Mr./NNP Stone/NNP)
(VP told/VBD)
(NP his/PRP$ story/NN)
/)
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Reading IOB Format in CoNLL 2000 Corpus

>>> print(conl12000.chunked_sents("train.txt", chunk_ types=["NP"][99])

(S
Over/IN

(NP a/DT cup/NN)
of/IN

(NP coffee/NN)

/

(NP Mr./NNP Stone/NNP)
told/VBD

(NP his/PRP$ story/NN)
/)
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Simple Evaluation and Baselines

e Let’s use CoNLL200(g ion of the rule-based

chunker we deve This means that 43%

of words are tagged
>>> from nltk.corp with O, i.e. not in an

>>> cp = nltk.Regex} NP chunk!
>>> test_sents =

>>> print(cp.evaluate(te :
ChunkParse score: But the tagger could

I0B Accuracy: 43.4% :

Recall: 0.0% so the precision and
F-Measure: 0.0%

chunk_types=["NP"])

recall is 0.0!



Simple Evaluation and Baselines

* Let’s try a simple regular expression pattern

>>> grammar = r''‘NP: {<[CDJNP].*>+}"
>>> cp = nltk.RegexpParser(grammar)
>>> print(cp.evaluate(test sents))
ChunkParse score:
I0B Accuracy: 87.7%
Precision: 70.6%
Recall: 67.8%
F-Measure: 69.2%

Not too bad for
a simple

pattern, ha?!



Training Classifier-Based Chunkers

* Even if we define an elaborated set of patter Similar PoS
still may not be the best method for chunking sequence but

different chunks!

Joey/NN sold/VBD the/DT farmer/NN rice/NN ./.

Nick/NN broke/VBD my/DT computer/NN monitor/NN ./.

e We can use data-driven techniques (similar to what we used for PoS
tagger development) to develop chunkers.



class ConsecutiveNPChunkTagger(nltk.Taggerl):
def init_ (self, train_sents):
train_set = []
for tagged sent in train_sents:
untagged _sent = nltk.tag.untag(tagged sent)
history = []
for 1, (word, tag) in enumerate(tagged sent):
featureset = npchunk features(untagged sent, 1, history)
train_set.append( (featureset, tag) )
history.append(tag)
self.classifier = nltk.MaxentClassifTier.train(
train_set, algorithm="megam®, trace=0)

det tag(self, sentence):
history = []
for 1, word in enumerate(sentence):
featureset = npchunk features(sentence, i1, history)
tag = self.classifier.classifty(featureset)
history.append(tag)
return zip(sentence, history)
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class ConsecutiveNPChunkTagger(nltk.Taggerl):
def 1nit_ (self, train_sents):
train_set = []
for tagged sent in train_sents:
untagged sent = nltk.tag.untag(tagged sent)
history = []
for 1, (word, tag) in enumerate(tagged sent):
featureset = npchunk features(untagged sent, 1, history)
train_set.append( (featureset, tag) )
history.append(tag)
self._classifier = nltk.MaxentClassifier.train(
train_set, algorithm="megam®, trace=0)

deft tag(self, sentence):
history = [

for

http://www.nltk.org/book/pylisting/code classifier chunker.py

retu
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indication of inheritance

class ConsecutiveNPChunkTagger(nltk.Taggerl):
def init_ (self, train_sents):
train_set = []
for tagged sent in train_sents:
untagged _sent = nltk.tag.untag(tagged sent)
history = []
for 1, (word, tag) in enumerate(tagged sent):
featureset = npchunk features(untagged sent, 1, history)
train_set.append( (featureset, tag) )
history.append(tag)
self.classifier = nltk.MaxentClassifTier.train(
train_set, algorithm="megam®, trace=0)

def tag(self, sentence):
history = []
for 1, word in enumerate(sentence):
featureset = npchunk features(sentence, i1, history)
tag = self.classifier.classifty(featureset)
history.append(tag)
return zip(sentence, history)



class ConsecutiveNPChunkTagger(nltk.Taggerl):
def 1nit (self, train_sents):
train_set = []
for tagged sent in train_sents:
untagged _sent = nltk.tag.untag(tagged sent)
history = []
class or 1, (word, tag) in enumerate(tagged sent):
instantiation featureset = npchunk features(untagged sent, i, history)
invokes train_set.append( (featureset, tag) )
init history.append(tag)
N self.classifier = nltk.MaxentClassifier.train(
train_set, algorithm="megam®, trace=0)

deft tag(self, sentence):
history = []
for 1, word in enumerate(sentence):
featureset = npchunk features(sentence, i1, history)
tag = self.classifier.classify(featureset)
history.append(tag)
return zip(sentence, history)



class ConsecutiveNPChunkTagger(nltk.Taggerl):
def 1nit_ (self, train_sents):
train_set = []
for tagged sent in train_sents:
untagged _sent = nltk.tag.
history = []
for 1, (word, tag) in enumerate(tagged sent):
featureset = npchunk features(untagged sent, 1, history)
train_set.append( (featureset, tag) )
history.append(tag)
self.classifier = nltk.MaxentClassifTier.train(
train_set, algorithm="megam®, trace=0)

to provide the
appropriate history to
the feature extractor

deft tag(self, sentence):
history = []
for 1, word in enumerate(sentence):
featureset = npchunk features(sentence, i1, history)
tag = self.classifier.classifty(featureset)
history.append(tag)
return zip(sentence, history)



class ConsecutiveNPChunkTagger(nltk.Taggerl):
def 1nit (self, train_sents):
train_set = []
for tagged sent in train_sents:
untagged _sent = nltk.tag.untag(tagged sent)
history = []
or 1, (word, tag) in enumerate(tagged _sent):
. featureset = npchunk features(untagged sent, i1, history)
instance of the train_set.append( (featureset, tag) )
object itself history.append(tag)
self._classifier = nltk.MaxentClassifTier.train(
train_set, algorithm="megam®, trace=0)

To indelicate

deft tag(self, sentence):
history = []
for 1, word in enumerate(sentence):
featureset = npchunk features(sentence, i1, history)
tag = self.classifier.classify(featureset)
history.append(tag)
return zip(sentence, history)



class ConsecutiveNPChunkTagger(nltk.Taggerl):
def init_ (self, train_sents):
train_set = []
for tagged sent in train_sents:
untagged _sent = nltk.tag.untag(tagged sent)
history = []
for 1, (word, tag) in enumerate(tagged sent):
featureset = npchunk features(untagged sent, 1, history)
train_set.append( (featureset, tag) )
history.append(tag)
self.classifier = nltk.MaxentClassifTier.train(

train_set, trace=0) Use Maximum

Entropy

def tag(self, sentence): classifier
history = []
for 1, word in enumerate(sentence):
featureset = npchunk features(sentence, i1, history)
tag = self.classifier.classifty(featureset)
history.append(tag)
return zip(sentence, history)




class ConsecutiveNPChunkTagger(nltk.Taggerl):
def init_ (self, train_sents):
train_set = []
for tagged sent in train_sents:
untagged _sent = nltk.tag.untag(tagged sent)
history = []
for 1, (word, tag) in enumerate(tagged sent):
featureset = npchunk features(untagged sent, 1, history)
train_set.append( (featureset, tag) )
history.append(tag)
self-clas§ifier = nItk:MaxeTtCIas?ifier-train( And, this is the
train_set, algorithm="megam®, trace=0)
method to be
def tag(self, sentence): used for
history = [] chunking
for 1, word in enumerate(sentence):
featureset = npchunk features(sentence, i1, history)
tag = self.classifier.classifty(featureset)
history.append(tag)
return zip(sentence, history)




Simple Feature Extraction

Only the part-of-
speech tag of the
current token

>>> deT npchunk_features(sentence, 1, history):
word, pos = sentence|i]
return {"'pos": pos}

>>> chunker = ConsecutiveNPChunker(train_sents)

>>> print(chunker.evaluate(test sents))
ChunkParse score:

I0B Accuracy: 92.9%

Precision: 79.9%

Recall: 86.8%

F-Measure: 83.2%



Simple Feature Extraction

>>> deT npchunk_features(sentence, 1, history):
word, pos = sentence|i]

SF i == Also, add the
prevword, prevpos = "<START>", "<START>" current word and
else- the PoS of the

prevword, prevpos = sentence[i1-1] previous wor

return {"'pos'': pos, "‘word': word, "'‘prevpos'': prevpos}

>>> chunker = ConsecutiveNPChunker(train_sents)

>>> print(chunker.evaluate(test _sents))
ChunkParse score:

10B Accuracy: 94.5%

Precision: 84.2%

Recall: 89.4%

F-Measure: 86.7%



>>> def npchunk features(sentence, 1, history):
word, pos = sentence[i]
it 1 == 0:
prevword, prevpos = "'<START>", "<START>"

else:
prevword, prevpos = sentencel[i-1]}
1T 1 == len(sentence)-1:
nextword, nextpos = "<END>", "'<END>* Also, include
else: i more complex
nextword, nextpos = sentencel[i+1] context features!
return {
"pos'": pos, "‘word": word, " 'prevpos'': prevpos,
“"nextpos'': nextpos, ‘‘prevpos+pos’: "%s+%s"™ %(prevpos, pos),
"postnextpos': "Ws+%s'" % (pos, nextpos),

"tags-since-dt": tags_since dt(sentence, 1)}

ChunkParse score:
I0B Accuracy: 96.0%
Precision: 88.6%
Recall: 91.0%

—_ - 0
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Nested Structure with Cascaded Chunkers

* It is possible to build chunk structures of arbitrary depth.

* To do so, we can use a multi-stage chunk grammar containing

recursive rules:
* For a chunker based on regular expressions, this means that we need to

change our RegEx pattern:

grammar = r
NP: {<DT]JJ|NN.*>+} # Chunk sequences of DT, JJ, NN

PP: {<IN><NP>} # Chunk prepositions followed by NP
VP: {<VB.*><NP|PP|CLAUSE>+$} # Chunk verbs and their arguments

CLAUSE: {<NP><VP>} # Chunk NP, VP
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Trees

* Tree a set of connected
labelled nodes each
reachable by a unique path
from a distinguished root
node, i.e. is an acyclic
graph.

 Nodes are often referred to
by terms parent, child and
sibling.
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Trees

* In NLTK, a tree is created using a node label and a list of children (list):

>>>
>>>
(NP
>>>
>>>
(NP

treel = nltk.Tree(°"NP", ["Alice"])

print(treel)
Alice)

tree2 = nltk.Tree("NP", ["the", "rabbit"])

print(tree2)
the rabbit)
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Trees

* A tree of an arbitrary depth can then be created in a recursively:

>>> tree3d = nltk.Tree("VP", ["chased®, tree2])

>>> treed4 = nltk.Tree("S", [treel, tree3]) 000 XN
>>> print(treed) file  Zoom
(S (NP Alice) (VP chased (NP the rabbit))) VF

Saw NP

>>> tree3.draw()
the man
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Tree Traversal

* An easy way to traverse a tree is to use a recursive function:

def traverse(t): See how we check tTis
try: ) tree and encode the

t.label O termination of the
except AttributeError: function with handling

print(t, end=" ") the exception !
else: # Now we know that t.node i1s defined

print("(", t.label(), end=" ")
for child in t:

traverse(child) print(")", end=" ")

>>> t = nltk.Tree("(S (NP Alice) (VP chased (NP the rabbit)))")
>>> traverse(t)

(S (NP Alice ) ( VP chased ( NP the rabbit ) ) )



