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Chapter 4

Random Projections
in Distributional Semantic Models

Random projections are mathematical tools that have been widely used in algorithm
design. They have had a number of significant contributions in several domains, such as
the applications of machine learning techniques to big data. At the expense of negligible
loss in the accuracy of the estimated distances between vectors, these methods reduce
the size of vectors to enhance the performance of processes. In distributional semantic
models, random indexing is one of the widely-used methods that can be understood using
the random projections theorems. In this chapter, the principles of random projections
are employed in order to reintroduce random indexing and propose new dimensionality
reduction methods for the `1-normed spaces.

This chapter starts with recapping the curse of dimensionality problem in distribu-
tional semantic models and enumerating a number of motivations for the proposed meth-
ods in Section 4.1. In Section 4.2, the random indexing technique is explained and jus-
tified mathematically. In Section 4.3, by extending the use of random projections to `1-
normed spaces, a novel technique called random Manhattan indexing (RMI) is introduced.
In Section 4.4, RMI and RI are compared, followed by a summary in Seciton 4.5.1

1Section 4.2 is mainly based on QasemiZadeh (2015b) and QasemiZadeh and Handschuh (2015). Sec-
tion 4.3.1 and 4.3.2 are based on Zadeh and Handschuh (2014a) and Zadeh and Handschuh (2014b), re-
spectively.
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106 Chapter 4. Random Projections in Distributional Semantic Models

4.1 Introduction
In order to model any aspect of the meanings in language, distributional semantic models
exploit patterns of co-occurrences. These methods tie the usage context of linguistic entit-
ies (e.g., words and phrases) to their meaning. Hence, meanings are assessed by quantific-
ation of the distributional similarities of linguistic entities. An intuitive, mathematically
well-defined model to represent and process such distributional similarities—amongst
other representation frameworks—is vector space.

Recall from Chapter 2, particularly Section 2.2.1, in a vector space model, each ele-
ment ~si of the standard basis (i.e., informally each dimension of the vector space) repres-
ents a context element. Given n context elements, a linguistic entity whose meaning is
being analysed is expressed by a vector ~v as a linear combination of ~si and scalars αi ∈ R
such that ~v = α1~s1 + · · · + αn~sn. The value of αi is acquired from the frequency of the co-
occurrences of the entity that ~v represents and the context element that ~si represents. As a
result, the values assigned to the coordinates of a vector, that is, αi, exhibit the correlation
of an entity and the context elements in an n-dimensional real vector space Rn.

In this vector space, similarities of vectors are understood to indicate similarities of
the meanings of linguistic entities that they represent. In order to assess the similarity
between vectors, a vector space V is endowed with a norm structure.1 A norm ‖.‖ is
a function that maps vectors from V to the set of non-negative real numbers, that is,
V 7→ [0,∞). The pair of (V, ‖.‖) is then called a normed space. In a normed space, the
similarity between vectors is assessed by their distances. The distance between vectors is
defined by a function that satisfies certain axioms and assigns a real value to each pair of
vectors, that is,

dist : V × V 7→ R, d(~v,~t) = ‖~v − ~u‖. (4.1)

The smaller the distance between two vectors, the more similar they are.
Amongst several choices, an `2-normed-based metric—such as the Euclidean distance

and the cosine similarity—is an innate choice.
Euclidean space is the most familiar example of a normed space. It is a vector space

that is endowed by the `2 norm. In Euclidean space, the `2 norm—which is also called the
Euclidean norm—of a vector ~v = (v1, · · · , vn) is defined as:

‖~v‖2 =

√√
n∑

i=1

v2
i . (4.2)

Using the definition of distance given in Equation 4.1 and the `2 norm, the Euclidean
distance is measured as:

dist2(~v, ~u) = ‖~v − ~u‖2 =

√√
n∑

i=1

(vi − ui)2. (4.3)

In `2-normed vector spaces, various similarity metrics are defined using different normal-
isation of the Euclidean distance between vectors, for example, the cosine similarity.

1Please note other structures than norm can be employed to assess the similarities.

http://atmykitchen.info/phd/thesis/chapter-2.pdf#chapter.2
http://atmykitchen.info/phd/thesis/chapter-2.pdf#subsection.2.2.1
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θ

Figure 4.1: Illustration of a document-by-term model consisting of 2 documents and 3 terms.
Each element of the standard basis si (i.e., each dimension), represents one of the 3 terms in
the model. The 3-dimensional vectors ~v = (w11,w12,w13) and ~u = (w21,w22,w23) represent the
two documents in the model. The dashed line shows the Euclidean distance between the vectors.
Similarly, the cosine of the angel between the vectors, cos(θ), defines the cosine similarity between
them.

A classic Salton et al.’s (1975) document-by-term model is, perhaps, the most familiar
example of the above-described vector space model (VSM). Given n distinct terms t and
a number of documents d, each document di is represented by an n-dimensional vector
~di = (wi1, · · · ,win), where wi j is a numeric value that associates the document di to the
term t j, for 1 < j < n. For instance, wi j may correspond to the frequency of the terms t j

in the document di. For a collection of m documents, a document-by-term matrix Mm×n

denotes the constructed vector space. Using the bag of words hypothesis, it is assumed
that the relevance of documents can be assessed by counting terms that appear in the
documents, independent of their order or syntactic usage patterns. Documents with similar
vectors are thus assumed to share the same meaning. Using the `2-norm, the similarity
between documents is then calculated by the Euclidean distance or the cosine similarity
shown in Figure 4.1.

As discussed in Chapter 2, when the number of entities in a VSM increases, the num-
ber of context elements employed for capturing similarities between them surges. As a
result, usually high-dimensional vectors, in which most elements are zero, represent en-
tities. However, when the dimension of vectors in a VSM increases, the discriminatory
power of the VSM diminishes. This results in setbacks known as the curse of dimen-
sionality. Hence, the curse of dimensionality is tackled using a dimensionality reduction
technique.

Dimensionality reduction can be achieved using a number of methods as an auxili-
ary process that is followed by the construction of a VSM—ranging from heuristic-based
selection process to ad hoc matrix factorisation techniques such as singular value de-
composition (see Section 2.3.3). The use of these dimensionality reduction techniques,
however, is hampered by a number of factors.

Firstly, a VSM at the original high dimension must be first constructed. Following the

http://atmykitchen.info/phd/thesis/chapter-2.pdf#chapter.2
http://atmykitchen.info/phd/thesis/chapter-2.pdf#subsection.2.3.3
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construction of the VSM, the dimension of the VSM is reduced in an independent process.
The VSM with the reduced dimensionality is thus available for processing only after the
whole sequence of these processes. However, construction of the VSM at its original
dimension is computationally expensive (e.g., all the co-occurrences must be collected
and stored) and the delayed access to the VSM with the reduced dimensionality is not
desirable.

Secondly, reducing the dimension of vectors using the methods listed above is of high
computational complexity. For instance, mapping Rn onto Rm using SVD truncation de-
mands a process of the time complexity O(n2m) and space complexity O(n2).1 Similarly,
in a heuristic-based selection process, the collected frequencies for each of the context
elements must be assessed. Depending on the employed heuristic, this process can be
resource-intensive, too; for example, the collected frequencies are often required to be
sorted by some criteria.

Last but not least, these methods are data-sensitive: if the structure of the data being
analysed changes—that is, if either linguistic entities or context elements are updated, for
example, some are removed or new ones are added—the dimensionality reduction process
is required to be repeated and reapplied to the whole VSM in order to reflect these updates.
The use of feature selection techniques or truncated SVD, therefore, may not be desirable
in several applications, particularly when dealing with frequently updated big text-data.

Random projections are mathematical tools that are employed to implement alternat-
ive dimensionality reduction techniques that can alleviate the aforementioned problems.
Random projections map high-dimensional vector spaces onto a low-dimension subspace
using matrices consisting of randomly generated vectors that guarantee the preservation
of distances between vectors. Hence, random projections are used to design dimension-
ality reduction techniques that (a) bypass a number of computations in the classic dimen-
sionality reduction techniques (e.g., the computation of orthogonal subspaces or selecting
context elements), and (b) merge the dimensionality reduction process into the process
of vector space construction to suggest an incremental—thus scalable—technique for the
construction of VSMs directly at a reduced dimensionality.

In the context of distributional semantic models, the widely-employed random index-
ing technique can be justified using the mathematical principles of random projections.
Random indexing (RI) is an incremental method for the construction of vector spaces at
a reduced dimensionality. It was first introduced by Kanerva et al. (2000) and further
propounded by Sahlgren (2005). Sahlgren (2005) delineates the RI method as a two-step
procedure that consists of the construction of (a) index vectors and (b) context vectors.

In the first step, each context element is assigned exactly to one index vector. Sahlgren
(2005) indicates that index vectors are high-dimensional, randomly generated vectors, in
which most of the elements are set to 0 and only a few to 1 and −1. In the second step,
during the construction of context vectors, each target entity is assigned to a zero vector
(i.e., all the elements of the vector are zero) that has the same dimension as the index
vectors. For each occurrence of an entity, which is represented by ~vei , and a context
element, which is represented by ~rck , the context vector for the entity is accumulated by

1It is worth mentioning that the use of incremental techniques can relax these requirements to an ex-
tent (e.g., see Brand, 2006).
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the index vector of the context element, that is, ~vei = ~vei + ~rck . The result is a vector space
model constructed directly at reduced dimension.

Both Sahlgren (2005) and Kanerva et al. (2000) introduce the random indexing method
in a mathematical framework other than random projections—that is the sparse distrib-
uted memory (SDM).1 The random indexing method was then developed and justified
by Kanerva et al. (2000) as one of the extensions of SDM, without providing a mathemat-
ical justification for the suggested two-step procedure and the method’s parameters—that
is, the dimension of index vectors and the proportion of zero and non-zero elements in
them.

In the remainder of this chapter, the random indexing technique is revisited and ex-
plained using theorems of random projections, which are refined by advances in statistics.
In contrast to the previous delineations of this method, the provided description gives
an understanding of the method which can be used for setting the method’s parameters,
recognising the limits of its use, and extending it to normed spaces other than `2.

In Section 4.2, random projections in Euclidean spaces—hence random indexing—is
refined using mathematical theorems, which are verified by empirical experiments. Ac-
cordingly, Section 4.3 describes random projections in `1-normed spaces, and introduce
the random Manhattan indexing technique—that is, a method similar to RI but for estimat-
ing city block distances. The differences between RI and RMI are reviewed in Section 4.4.
Finally, this chapter concludes with a discussion and summary in Section 4.5.

4.2 Random Projections in Euclidean Spaces

In Euclidean spaces, random projections are elucidated by Johnson and Lindenstrauss’s
(1984) lemma (JL lemma). Given an ε, 0 < ε < 1, the JL lemma states that for any set of
p vectors in a high n-dimensional Euclidean space En,2 there exists a mapping onto an m-
dimensional space Em, for m ≥ m0 = O(log p/ε2), that does not distort the distances between
any pair of vectors, with high probability, by a factor more than 1 ± ε. This mapping can
be expressed by

M′

p×m = Mp×nRn×m, m � p, n, (4.4)

where Rn×m is often called the random projection matrix, and Mp×n and M′

p×m denote the
p vectors in En and Em, respectively. According to the JL lemma, if the distance between
any pair of vectors ~v and ~u in M is given by the distEuc(~v, ~u), and their distance in M′

is
given by dist′Euc(~v, ~u), then there exists an R such that

(1 − ε)dist′Euc(~v, ~u) ≤ distEuc(~v, ~u) ≤ (1 + ε)dist′Euc(~v, ~u).3 (4.5)

Instead of the original n-dimensional vector space and at the expense of negligible amount
of error ε, the distance between ~v and ~u can be calculated in the m-dimensional vector
space. Accordingly, since m � n, the time and the space complexity for the computation

1For a brief introduction to sparse distributed memory see Kanerva (1993)
2En is an n-dimensional real vector space Rn endowed by the `2 norm.
3In addition, the lemma states that this mapping can be found in randomised polynomial time.
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of distances can be reduced significantly. The random projection matrix R is stored for
later usages, such as adding new entities to the vector space.

The JL lemma does not specify the projection matrix R. Finding R that satisfy the JL
lemma is therefore the most important design decision when using random projections.
Originally, Johnson and Lindenstrauss (1984) proved the lemma using an orthogonal pro-
jection onto a random m-dimensional subspace of the original vector space. Subsequent
studies simplified the original proof and suggested several choices of R that resulted in
projection techniques with enhanced computational efficiency (e.g., see Dasgupta and
Gupta, 2003, for references). It is proved that a mapping that satisfies the JL lemma
can be obtained, with a high probability, using a random projection R whose entries are
independent and identically distributed (i.i.d.) and have zero mean and constant variance.1

Recently, Achlioptas (2001) shows that a sparse R with an asymptotic Gaussian dis-
tribution, whose elements ri j are defined as

ri j =
√

s


−1 with probability 1

2s

0 with probability 1 − 1
s

1 with probability 1
2s

, (4.6)

for s ∈ {1, 3}, results in a mapping that also satisfies the JL lemma.2

Subsequent research showed that R can be constructed from even sparser vectors than
what is suggested in Achlioptas (2001) (e.g., see Li et al., 2006b; Matous̆ek, 2008). Spe-
cifically, Li et al. (2006b) has proved that in a mapping of an n-dimensional real vector
space by a sparse R, the JL lemma holds as long as s = O(n), for example, s =

√
n or

even s = n/log(n).
Using a sparse R that is given by Equation 4.6 reduces the number of multiplication

operations in Equation 4.4 by the factor 1
s and thus speeds up the mapping process—that

is, the computation of M′

. The larger the value of s, the sparser the random vector is;
hence, at the expense of insignificant loss in the accuracy of the estimated distances, it
is expected that the succeeding processes will be faster. Moreover, the multiplication of
the scaling factor

√
s can be postponed until after the mapping, or when it is necessary.

Floating-point arithmetic operations, therefore, can be avoided during the computation
of the mapping, which consequently enhances the computational as well as the memory
complexity. Nonetheless, to say that a sparse R requires less space for its storage.

Apart from the sparse mapping, another major benefit when computing M′ is obtained
using the linearity of matrix multiplication. Each vector ~vei in the original n-dimensional
space, that is, ith row of M, can be represented as a weighted sum of the basis vectors

~vei = wi1~sc1 + wi2~sc2 + · · · + win~scn , (4.7)

1For the simplicity of theoretical analysis, it is often assumed that entries of R have the standard Gaus-
sian distribution—that is, for each m-dimensional random vector r in R, r ∼ Nm(0, 1). According to the
central limit theorem, the probability distribution of i.i.d. variables that have finite variance approaches a
Gaussian distribution.

2The mapping in Equation 4.6 guarantees that distances are preserved with a probability of at least
1 − p−γ, for some γ > 0 (see Achlioptas (2001), for proof and explanation.)
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where wi j, i ≤ p and j ≤ n are derived from the frequency of the co-occurrences of the
entity and context element that ~vei and ~sck represent, respectively. By the basic properties
of the matrix multiplication, the projection of ~vei in M′ is given by

~v
′

ei
= ~veiR = wi1~sc1R + wi2~sc2R + · · · + win~scnR. (4.8)

In turn, since, by definition, all the elements of the standard basis ~sck are zero except
the kth element, which is equal to 1, the statement given in Equation 4.8 can be equally
written as

~v
′

ei
= wi1~r1 + wi2~r2 + · · · + win~rn, (4.9)

where ~r j is the jth row of R. Equation 4.9 means that row vectors ~v
′

ei
, thus M′, can

be computed directly without necessarily constructing the whole matrix M. From one
perspective, the jth row of Rn×m represents a context element in the original vector space
that is located at the jth column of Mp×n.1 Therefore, a vector representation of an entity
at a reduced dimension can be computed directly by accumulating the row vectors of R
that represent the context elements that co-occur with the entity.

4.2.1 Improving the RI Algorithm: An Outcome of the Exposition

The RI technique can be reintroduced using the mathematical explanations given in the
previous section. As can be understood, the RI technique can be seen as a dimensionality
reduction technique for Euclidean spaces. RI implements a random projection that em-
ploys a random matrix R with an asymptotic Gaussian distribution (as it is expressed by
Equation 4.4). The construction of index vectors—that is, the first step of RI—is equi-
valent to the construction of the random projection matrix R, whose elements are given
by Equation 4.6. Each index vector is a row of the random projection matrix R. The
second step of RI, the construction of context vectors, deals with the computation of M′

.
Each context vector is a row of M′

, which is computed by the iterative process justified in
Equation 4.9.

While in previous research the parameters of the RI method are left to be decided
entirely through experiments (e.g., see Lupu, 2014; Polajnar and Clark, 2014), the adop-
ted mathematical framework can be leveraged to provide a guideline for setting the RI’s
parameters. Using the JL lemma, a criterion for choosing the dimension of vector spaces
constructed by the RI method at the reduced dimensionality (i.e., m in Equation 4.4) and
the number of zero and non-zero elements in index vectors (i.e., s in Equation 4.6) are
suggested.

In a VSM constructed using RI at a reduced dimensionality, the degree of preservation
of distances between vectors in the original high dimension and at the reduced dimen-
sionality m is determined by the number of vectors in the model and m. If the number of
vectors (i.e., the number of entities that are modelled in the VSM) is fixed, then the larger
m is, the better the Euclidean distances will be preserved at the reduced dimension m. In
other words, the probability of preserving the pairwise distances increases as m increases.

1Informally, the jth dimension of the original n-dimensional vector space.
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However, from the computational perspective, the lower the value of m is, the less com-
putation is required for the construction of the VSM and the calculation of the distances,
and therefore the better the efficiency is. From this perspective, the choice of dimension-
ality in RI-constructed VSMs is a trade-off between efficiency and accuracy. Similarly,
the value of m can be seen as the capacity of a RI-constructed VSM for accommodating
new entities. Therefore, compared to m = 4000 suggested in Kanerva et al. (2000) or
m = 1800 in Sahlgren (2005), depending on the number of entities that are modelled in
an experiment, m can be set to a smaller value such as m = 400.

The discussion above can be approached by investigating the distribution of the pair-
wise distances in the original high-dimensional vector space and the constructed vector
space using RI (see also Stein, 2007). If the pairwise distances in the original space are
and relatively small, then in order to be able to distinguish them, the distortion of the
pairwise distances at the reduced dimensionality must be small (i.e., ε in Equation 4.5). If
the number of entities in the model is fixed, then the distortion of the pairwise distances
reduces when m increases. Hence, the distribution of the pairwise distances is a factor
that can influence the chosen value for m.

Based on the results reported in Li et al. (2006b), when embedding an n-dimensional
vector space onto a vector space of a reduced dimensionality m, the JL lemma holds—that
is, pairwise Euclidean distances between vectors are preserved—as long as s in Equation
4.6 is O(n). In text processing applications, the number of context elements and thus the
dimension of vector spaces (i.e., n) is often very large. When using the random indexing
method, therefore, even a careful choice such as s =

√
n in Equation 4.6 results in very

sparse random index vectors. In most text processing applications, therefore, by setting
only 2 or 4 non-zero elements in index vectors, distances in the RI-constructed model
resemble distances in the high n-dimensional model (for the mathematical proofs, see Li
et al., 2006b, Appendix B).

It is worth reminding that if the dimension of index vectors (i.e., m) is fixed, then
increasing the number of non-zero elements in index vectors causes additional distor-
tions in the pairwise Euclidean distances. For index vectors of fixed dimensionality m,
if the number of non-zero elements increases, then the probability of the orthogonality
between index vectors decreases (see examples from a simulation in Figure 4.2). Hence,
an increase in the number non-zero elements while m is fixed can stimulate distortions in
pairwise distances. However, it is important to note that causing distortions in the pair-
wise distances can be beneficial; for example, it may reduce the effect of noise and foster
assortment of similar context elements. As a result, distortions in the pairwise distances
can be favourable in a number of applications.

To verify the theoretical explanations given above, the discussion continues by report-
ing the observed empirical results from a set of experiments in the next section.

4.2.1.1 Setting the parameters of RI: Empirical observations

Instead of a task-specific evaluation, the ability of RI-constructed vector spaces in pre-
serving pairwise Euclidean distances is shown when the method’s parameters are set dif-
ferently.
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Figure 4.2: Orthogonality of index vectors: the y-axis shows the proportion of non-orthogonal
pairs of index vectors (denoted by P6⊥) for sets of index vectors of various dimension m =

100, 1000, and 2000 obtained in a simulation. For sets of index vectors of a fixed size n = 104,
the left figure shows the changes of P6⊥ when the number of non-zero elements increases. The
right figure shows P6⊥ when the number of non-zero elements is fixed to 8, however, the number
of index vector n increases. As shown in the figure, P6⊥ remains constant independently of n.

In the reported experiments, a subset of Wikipedia articles, which are chosen ran-
domly from the WaCkypedia_EN corpus—that is, a 2009 dump of the English Wikipe-
dia (Baroni et al., 2009)—are used.1 A document-by-term VSM at its original high di-
mension is first constructed from a set of 10,000 articles (shown by D). A pre-processing
of documents in D—that is, white-space tokenisation followed by the elimination of
non-alphabetic tokens—results in a vocabulary of 192,117 terms. Each document in D
is represented by a high-dimensional vector; each dimension represents an entry from
the obtained vocabulary (as illustrated earlier in Figure 4.1). Therefore, the constructed
VSM using this classic one-dimension-per-context-element method has a dimensionality
of n = 192,117.2

To keep the experiments in a manageable size, each document d in D is randomly
grouped by another 9 documents from D, which consequently gives 10,000 sets of a set
of 10 documents. Using the constructed n-dimensional (n = 192,117) vector space, for
each set of documents, the Euclidean distances between d and the remaining 9 documents
in the set are computed. Subsequently, these 9 documents are sorted by their distance from
d to obtain an ordered set of documents. The process therefore results in 10,000 ordered
sets of 9 documents. The Euclidean distance is replaced with the cosine similarity and
repeat the processes mentioned above. Figure 4.3 shows a histogram of the distribution
of the distances between documents in these sets of documents. Figure 4.4 shows the
distribution of the pairwise distances for all of the 10,000 documents; as shown, the dis-
tribution of the sampled distances closely resembles the distribution of all the pairwise
distances in the model.

The procedure described above is repeated, however, by calculating distances in VSMs
that are constructed using the RI method. Each term in the vocabulary is assigned to an

1The corpus can be obtained from http://wacky.sslmit.unibo.it/doku.php?id=corpora.
2In all the performed experiments, the frequency of terms in documents is used to indicate weights in

corresponding vectors.

http://wacky.sslmit.unibo.it/doku.php?id=corpora
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Figure 4.3: A histogram of the distribution of (a) the Euclidean distances and (b) the cosine simil-
arities between pairs of vectors in the VSM of dimension 192,117 that are sampled randomly and
employed for the experiments.

m-dimensional index vector and each document to a context vector. Context vectors are
updated by accumulating index vectors to reflect the co-occurrences of documents and
terms. Subsequently, the obtained context vectors are used to estimate the Euclidean dis-
tances and the cosine similarities between documents. The estimated distances are then
used to create the ordered sets of documents, exactly as explained above. This process
is repeated several times when the parameters of RI—that is, the dimension m and the
number of non-zero elements in index vectors—are set to different values.

It is expected the relative Euclidean distances as well as the cosine similarities between
documents in the RI-constructed VSMs to be the same as in the original high-dimensional
VSM.1 Hence, the ordered sets of documents obtained from estimated distances in the RI-
constructed VSMs must be identical to the corresponding sets that are derived using the
computed distances in the original high-dimensional VSM. For each VSM constructed
using the RI method, therefore, the resulting ordered sets are compared with the obtained
ordered sets from the original high-dimensional VSM using the Spearman’s rank correl-
ation coefficient measure (ρ).

The Spearman’s rank correlation coefficient evaluates the strength of an association
between two ranked variables, that is, two lists of sorted documents in our experiments.
Given a list of sorted documents obtained from the original high-dimensional VSM (listo)
and its corresponding list obtained from a VSM constructed using the RI method (listRI),
Spearman’s rank correlation for the two lists is given by

ρ = 1 −
6
∑

dif 2
i

n(n2 − 1)
, (4.10)

where dif i is the difference in paired ranks of documents in listo and listRI , and n = 9 is the
number of documents that are sorted in each list. The average of ρ over the obtained sets

1The preservation of the cosine similarities can be verified mathematically, for example, see the
provided proofs in Kaski (1998). Simply put, the cosine similarity can be expressed using the Euclidean
distance when the length of vectors is normalised to unit length. This simple fact can be used to show that
the cosine similarities are preserved when using the RI method.
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Figure 4.4: A histogram of the distribution of all the pairwise distances in the VSM of dimension
192,117 for (a) the Euclidean distances and (b) the cosine similarities.
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Figure 4.5: Correlation between the estimated Euclidean distances in RI-constructed vectors
spaces and the original high-dimensional vector space: ρ̄ shows the average of the Spearman’s
rank correlation coefficient between the ordered sets of documents that are obtained using the RI-
constructed vectors spaces and the original high-dimensional vector space. Results are shown for
both Euclidean distances as well as the cosine similarities when parameters of the RI method are
set to different values.

of ordered set of documents (ρ̄) is reported to quantify the performance of RI with respect
to its ability to preserve `2-normed distances, when its parameters are set to different
values: the closer ρ̄ is to 1, the more similar the order of documents in an RI-constructed
and the original high-dimensional VSM.

Figure 4.5 shows the obtained results. Since the dimension of the original vector space
is very high, 2 non-zero elements per index vector are sufficient to construct a vector space
that resembles relative distances between vectors in the original high-dimensional vector
space, even for m = 1600. In addition, because only a small number of documents—that
is, p = 10000—are modelled, even at the reduced dimension of m = 100, the estimated
distances in the RI-constructed vector space shows a high correlation to the distances in
the original vector space (i.e., ρ̄ > 0.92 for pairwise Euclidean distances and ρ̄ > 0.82
for the cosine similarity). As expected, the generated random baseline for ρ̄ in Figure 4.5
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Figure 4.6: Distribution of distances in the RI-constructed VSMs: as m increases, the distribu-
tion of the distances in the RI-constructed VSMs are becoming more similar to the distances’
distribution in the original high-dimensional VSM.

is −0.002, that is, approximately 0. For m = 1600, the observed pairwise distances in
the RI-constructed vector space are almost identical to the original vector space, that is,
ρ̄ > 0.99 for Euclidean distances and ρ̄ > 0.96 for the cosine. Figure 4.6 compares the
distribution of distances in the original high-dimensional VSM and the RI-constructed
VSMs. As expected, when m increases, these distributions are becoming more similar to
each other.

4.2.2 Related Work and Other Justifications of RI

As cited by Sahlgren (2005), the RI method was inspired from Kanerva’s sparse distrib-
uted memory (SDM).1 SDM, which was initially designed as a model of human long-term
memory, is a cognitive-mathematical model. To formalise computation in several applic-
ations, it employs a high-dimensional binary vector space, the Hamming distance, as well
as mathematical theorems that are often used in neural networks.2 The RI method was
then developed and justified by Kanerva et al. as an extension of SDM, without provid-
ing mathematical details, which are provided here. 3 An impression similar to Kanerva
et al.’s (2000) RI can also be found in the methods suggested by Gallant (e.g., see Gallant,

1Perhaps more comprehensible than the JL lemma
2Recently, Snaider (2012, Chap. 2) has provided a summary of the SDM’s mathematical foundation,

and compared it with other mathematical models.
3Neither Sahlgren (2005) nor Kanerva et al. (2000) specify the proportion of the zero and non-zero

elements in the index vectors, except that most of the elements of the index vectors are zero and only a few
are 1 and −1. For instance, Kanerva et al. (2000) suggest 10 non-zero elements for a 4000-dimensional
index vector without providing further explanation. Although Sahlgren and Karlgren (2005) suggest the
following distribution (which can also be found in Sahlgren, 2006, chap. 4) for the elements of the index
vectors:

ri j =


+1 with probability β/2

m

0 with probability m−β
m

−1 with probability β/2
m

, (4.11)
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1991).1

An account of random projection in Euclidean spaces similar to RI can be given fol-
lowing Kohonen’s seminal work on self-organising maps (e.g., see Ritter and Kohonen,
1989, Appendix I). For instance, Kaski (1998) introduces random mapping, a dimension
reduction technique that employs random projections in Euclidean spaces. Instead of the
JL lemma, Kaski (1998) relies on the fact that the least distortion in a mapping in a Eu-
clidean space, such as Equation 4.4, is attained when R is orthogonal. Using reported
results in Hecht-Nielsen (1994), Kaski assumes that randomly created vectors are most
likely to be orthogonal and suggests mapping by a random matrix constructed by i.i.d.
random vectors r ∼ Nm(0, 1).2 He then shows that the distortion in the inner product
of pairs of vectors at reduced dimension is on average zero and its variance is less than
2/m. Several other theorems and proofs, which give similar results to the JL lemma, can
be found to explain the use of random projection for dimension reduction in Euclidean
spaces in various applications (e.g., see Linial et al., 1995; Arriaga and Vempala, 2006).3

The viability of the random projection techniques in general, and the RI method spe-
cifically, have been verified in several research reports. Amongst them, experimental res-
ults reported by Bingham and Mannila (2001) admit that the dimension reduction using
the suggested sparse random matrix in Achlioptas (2001) provides comparable results to
the conventional dimension reduction techniques, such as truncated SVD, in a document
similarity measurement application. In addition, a growing number of research in diverse
application domains employ the RI technique for dimension reduction (e.e., see Jurgens
and Stevens, 2009, 2010; Musto et al., 2012; Yannakoudakis and Briscoe, 2012).

Apart from setting the RI method’s parameters, the proposed theorems in Section 4.2
enable us to (a) categorise methods employed for incremental VSM construction at a
reduced dimensionality, and (b) provide mathematical justifications for several variations
of the RI method proposed in research literature. First and foremost, incremental methods
can be categorised based on the type of projections that they employ to construct VSMs
at a reduced dimensionality (hence, the type of similarity metrics that they estimate).
Despite that in natural language processing applications, the majority of these methods
suggest the use of Gaussian random projections for estimating `2 norm-based similarities,
a few researchers suggest random projections other than Gaussian to estimate similarities
in VSMs other than `2-normed (e.g., see TopSig by Geva and De Vries (2011) and the
random Manhattan indexing method proposed later in this chapter).

If a method based on random projections is employed to construct `2-normed VSMs,

they do not provide a criterion for choosing the values of m and β. The given distribution in Equation 4.11
expresses the probability of non-zero elements in terms of the dimension of the index vectors (i.e., m), and
the number of non-zero elements (i.e., β). In this way, the degree of the sparsity of index vectors is shown
by the probability of the non-zero elements.

1For an algorithmic description of these methods in a retrieval task see Caid and Oing (1997) and its
references.

2Similar conclusion is drawn for the RI technique.
3Resulting from the popularity of connectionist methodology in late 80s and early 90s, the list of

research that propose similar methodologies is very long. Giving a comprehensive view of this research
effort is beyond the scope of this thesis. Interested readers can perhaps gain insight by following a citation
network, for example, by starting from Pollack (1990) or any of the references listed in this section.
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then its underlying mathematical principles is similar to RI1; hence, this method can be
categorised in the same group of methods as RI. The major differences between methods
in this category often result from (a) the procedure that they employ to construct a VSM
at a reduced dimensionality (i.e., the second step of the RI procedure as explained from
Equation 4.7 to 4.9) and/or (b) the weighting methodology that they employ in order to
smooth collected co-occurrence frequencies.2 The weighting process can be combined
with the context vector construction, too.

As suggested earlier, the context vector construction can be carried out using a se-
quential scan of a corpus. The sequential scan, however, can be tailored to meet the
requirements of a particular application. For example, context vectors can be updated
every time the corpus is updated. Similarly, the weighting strategy can be changed to
serve a specific purpose. Both of the alterations can take place by an intuitive or cognitive
perspective, which may seem different from the RI technique. However, as long as substi-
tuted strategies can be interpreted using theorems suggested in Section 4.2, the resulting
methods are, in essence, equivalent to the mapping that is given by the RI technique. In
this case, the resulting vector space at reduced dimension still conforms to what is stated
here for the RI-constructed VSMs.

The incremental semantic analysis (ISA) method, which is proposed by Baroni et al.
(2007), and the reflective random indexing method, which is proposed by Cohen et al.
(2010), are examples of the techniques discussed in the above paragraph. These methods
offer interesting intuitions, other than the RI method, in order to enhance the results ob-
tained for semantic similarity measurements in some applications. However, in both of
these methods, the strategy employed for the construction of VSMs at reduced dimension-
ality can be interpreted as a technique for the adjustment of wi j weights in Equation 4.4.
Therefore, both methods are essentially the same as the RI method described here—that
is, random projection with a sparse asymptotic Gaussian random matrix. For example, it
can be verified that Baroni et al.’s (2007) ISA technique integrates a Laplacian smoothing
to the RI’s two-step procedure.

4.2.3 RI’s Advantages Versus Limitations

The RI technique reduces the time and the space complexity of the required processes for
constructing a VSM with regards to the values of

• n and m in Equation 4.4—that is, the original dimension of VSM and its reduced
dimension obtained using RI, respectively;

• s in Equation 4.6—that is, the proportion of zero and non-zero elements in index
vectors.

When using a sparse matrix representation, compared to a classic one-dimension-per-
context VSM construction technique, the RI method imposes an additional β− 1 addition
operations, where β is the number of non-zero elements in index vectors. However, this

1Or, can be equivalently represented as.
2A description of the weighting process in VSMs is given in Chapter 2).

http://atmykitchen.info/phd/thesis/chapter-2.pdf#chapter.2
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additional computation is insignificant considering the fact that RI combines the construc-
tion of a vector space with the dimension reduction processes. RI eliminates the need for a
resource-intensive dimension reduction technique, such as the truncated SVD. Evidently,
by reducing the dimension of the vector space, RI enhances the time complexity of the
process of measuring distances between vectors by an approximate factor of n

m . As sug-
gested earlier, the use of sparse projections further enhances the time complexity of the
construction of VSM by a factor equal to 1

s , and, to an extent, the space complexity for
storing and manipulating VSMs.

In many dimension reduction techniques other than random projection, the projec-
tion subspace is devised by the analysis of data in the original high-dimensional VSM.
For instance, in order to employ truncated SVD, a linear equation that finds eigenvectors
should be solved. Therefore, in these methods, if the structure of the data being ana-
lysed changes, the basis of the projection subspace also changes. Additionally, in such
data-sensitive dimension reduction techniques, the vector space at the reduced dimen-
sion—thus, similarity assessments—is only available after the computation of the trans-
formation and applying it to the data at the original high dimension. Both stipulations
impose limitations when using a data-sensitive dimension reduction technique, which the
RI method can resolve.

The first limitation is faced when updating a vector space that is followed by a data-
sensitive method of dimensionality reduction. In this setup, updating the vector space
results in cumbersome processes. The process of dimensionality reduction needs to be re-
peated in order to reflect the changes in the model. For example, the use of the truncated
SVD demands the recalculation of the eigenvectors, and therefore the alternation of the
transformation process, which affects all the vectors in the model at reduced dimension.
As a result, a process such as distance computation should be repeated for all the vector
space entries. However, in the RI technique, the employed subspace for dimension re-
duction, to a great extent, is independent of the data structure. Updating the vector space
is carried out by the accumulation of existing or new index vectors, which affects only
certain vectors. Thus, processes such as distance calculation are only necessary for the
affected vectors.

The second limitation of a data-sensitive dimension reduction technique is that vector
space at reduced dimension is available for processing only after the computation of the
transformation. In contrast, when using the RI method, vector space at reduced dimen-
sion is available for processing during the construction of the vector space. As a result,
similarity assessment is feasible at any time during the vector space construction, even
when all the occurrences of entities in contexts are not observed. This is an extra advant-
age when processing frequently updated information, such as text streams in social media
(e.g., see Sahlgren and Karlgren, 2009; Jurgens and Stevens, 2009; Karlgren et al., 2012).

The dimension of a vector space constructed using the RI method is fixed and, to a
great extent, independent of the number of employed contexts and the size of corpus.
However, the dimension of the vector space in a one-dimension-per-context model in-
creases when new contexts are required to be added to the model. In a distributional
model of semantics, due to the power-law distribution of context elements, appending a
new entity to a model often requires appending new context elements to the model. The
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new entity most likely appears in/with context elements that have not yet appeared in the
model. Therefore, in order to keep the model updated, its dimension should be increased
to encompass new appended context elements. In contrast, in the RI technique, a large
number of new context elements can be easily added to a vector space without changing
its dimension, but at the expense of an insignificant loss of accuracy, which can be estim-
ated by the JL lemma. A new context is defined and appended to the model simply by
defining a new index vector.

The fixed dimensionality of the vector space constructed by RI and advance know-
ledge of its value are major advantages when dealing with big data, particularly in dis-
tributed computing frameworks. As described above, the induced vector space models
using a technique such as the RI method scale up linearly with respect to the number of
entities and not the number of contexts. In addition, the prior knowledge of the vectors’
dimension is advantageous for load balancing in distributed computing frameworks (e.g.,
see Gufler et al., 2012, for an explanation of the load balancing problem).

The RI technique, however, comes with a number of limitations, which can be in-
ferred from the proposed mathematical understanding of RI. The mathematical justific-
ation given in Section 4.2 explicitly states that the RI method, which employs a random
matrix R whose elements are defined using the asymptotic distribution given in Equation
4.6, can only be applied for the approximation of similarity measures in the `2 normed
spaces. That is, RI can be employed if similarity measures are derived from the `2 norm
such as the Euclidean distance and the cosine similarity. For instance, the use of RI-
constructed VSMs for estimating the city block distances between vectors—for example,
as suggested in Lapesa and Evert (2013)—is not justified, at least mathematically.1

This list of the advantages and disadvantages is not exhaustive and new items can be
added or removed according to the application context or the comparison framework.

4.2.4 A Summary of the Exposition’s Outcomes
In Section 4.2, the use of Gaussian sparse random projections for dimension reduction
in Euclidean spaces is described, which consequently arrives at the well-known random
indexing technique. Accordingly, in Section 4.2.1.1, observed results in an empirical ex-
periment are shown to understand the method’s behaviour with respect to its ability to
preserve pairwise Euclidean distances, or in general `2-normed-based similarity meas-
ures. In addition, several important outcomes from the mathematical description of the
RI method are emphasised.

Firstly, whereas the original delineation of the method did not provide a concrete
guideline for setting the method’s parameters, Section 4.2.1 ameliorates the previous two-
step procedure with criteria for choosing the dimensionality as well as proportion of zero
and non-zero elements of index vectors.

Secondly, the proposed understanding of the RI method is employed to discern its
limitations and application domain. It is proven that the employed random projections by
the RI method do not preserve distances other than `2 (e.g., see Brinkman and Charikar,

1For example, see proofs in Brinkman and Charikar (2005). Also, see the reported empirical observa-
tions in Section 4.4.
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2005). Hence, it is important to note that RI-constructed VSMs can only be used for
estimating similarity measures that are derived from the `2 norm—for example, the Euc-
lidean distance and the cosine similarity.

Thirdly, the rationale given in the aforementioned sections provides a framework to
justify several variations of the RI technique mathematically. Although these methods
are based on plausible intuitions, similar to RI, they lack theoretical justifications. For
example, the given mathematical description can be employed to identify the method
proposed in Baroni et al. (2007) as a variation of RI that employs Laplacian smoothing.
Similarly, the same rationale can be used for categorisation of the methods that construct
VSMs at a reduced dimensionality. This idea can be generalised to coordinate all other
major processes that are often involved when using VSMs.

Lastly, the given understanding of the mechanism of RI can be employed to general-
ise RI to normed spaces other than `2. This generalisation can be achieved using random
projections with a distribution other than asymptotic Gaussian—for example, as sugges-
ted in Indyk (2006); Li et al. (2013)—and altering Equation 4.6. Accordingly, in the next
section, the random Manhattan indexing is proposed for constructing `1-normed VSMs
incrementally and directly at a reduced dimensionality.

4.3 Random Projections in `1-Normed Space
As stated earlier, in a vector space, the similarity between vectors can be assessed using
a norm structure. Besides the `2 norm, `1 norm is another not so common choice for the
similarity measurement. The `1 norm for ~v is given by:

‖~v‖1 =

n∑
i=1

|vi|, (4.12)

where |.| signifies the modulus.1 Expectedly, a vector space endowed with the `1 norm
is called an `1-normed space. The distance in an `1-normed vector space is often called
the Manhattan, taxicab, or the city block distance. According to the definition given in
Equation 4.1, the Manhattan distance between two vectors ~v and ~u is given by:

dist1(~v, ~u) = ‖~v − ~u‖1 =

n∑
k=1

|vi − u j|. (4.13)

Shown in Figure 4.7, the collection of the dash-dotted lines is the `1 distance between the
two vectors. Similar to the `2-normed spaces, various normalisations of the `1 distance2

define a family of `1-normed similarity metrics.
Similar to `2-normed spaces, the curse of dimensionality can obstruct efficient com-

putation in `1 normed spaces. Both heuristic-based and transformation-based dimension-
ality reduction techniques can also be employed to alleviate the curse of dimensionality

1The definition of the norm is generalised to `p spaces with ‖~v‖p =
(∑

i |vi|
p)1/p; the discussion about

`p-normed spaces other than p = 1, 2 goes beyond the scope of this thesis.
2As long as the axioms in the distance definition hold.
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Figure 4.7: The sum of the dash-dotted lines is the Manhattan distance between the two vectors
~v1 = (w11,w12,w13) and ~v2 = (w21,w22,w23). Whereas the Euclidean distance between the two
vectors is the length of the straight line between them (the dashed line), the Manhattan distance
between the two vectors is the sum of the absolute differences of their coordinates.

in `1-normed spaces. For example, similar to SVD truncation in `2-normed spaces, mat-
rix factorisation techniques that guarantee the least distortion in the `1 distances can be
employed (e.g., see Kwak, 2008). However, as discussed in Section 4.1, these methods
are not desirable in a number of applications; for example, due to the resources they de-
mand for computing VSMs at a reduced dimensionality, delays that they may cause in
accessing VSMs at a reduced dimensionality, and frequent changes in the structure of
data in VSMs. Accordingly, it is stated that random projections can be used to implement
alternative dimensionality reduction techniques that can alleviate these problems.

In Euclidean spaces, random projections can be employed to introduce the RI tech-
nique. RI solves the problems stated above by combining the construction of a vector
space and the dimensionality reduction process. Unlike methods that first construct a
VSM at its original high dimension and conduct a dimensionality reduction afterwards,
the RI method avoids the construction of the original high-dimensional VSM. Instead, it
merges the vector space construction and the dimensionality reduction process. RI, thus,
significantly enhances the computational complexity of deriving a VSM from text. How-
ever, the application of the RI technique (likewise, the standard truncated SVD in LSA) is
limited to `2-normed spaces, that is, when similarities are assessed using a measure based
on the `2 distance. It is verified that using RI causes large distortions in the `1 distances
between vectors (Brinkman and Charikar, 2005). Hence, the RI technique is not suitable
for constructing VSMs if similarities are computed using the `1 distance.

Depending on the distribution of vectors in a VSM, the performance of similarity
measures based on the `1 and the `2 norms varies from one task to another. For in-
stance, it is suggested that the `1 distance is more robust to the presence of outliers and
non-Gaussian noise than the `2 distance (see the problem description in Ke and Kanade,
2003)). Hence, the use of the `1 distance can be more reliable than the `2 distance in
certain applications. For instance, Weeds et al. (2005) suggest that the `1 distance out-
performs other similarity metrics in a term classification task. In another experiment, Lee
(1999) observed that the `1 distance gives more desirable results than the cosine and the
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`2 measures.
In this section, a novel method called random Manhattan indexing (RMI) is intro-

duced, which employs random projections in `1-normed spaces. RMI constructs a VSM
directly at a reduced dimension while it preserves the pairwise `1 distances between vec-
tors in the original high-dimensional VSM. A computationally enhanced version of RMI
called random Manhattan integer indexing (RMII) is then introduced. RMI and RMII,
using the similar principles employed by RI, merge the construction of a VSM and di-
mension reduction into an incremental—thus, efficient and scalable—process. In Section
4.3.1, the RMI method is explained and evaluated. In Section 4.3.2, the RMII method is
explained. RMI and RMII are compared to RI in Section 4.4.

4.3.1 Random Manhattan Indexing
In this section, the Random Manhattan Indexing (RMI) method is proposed: an algorithm
that adapts random projections in order to introduce an incremental procedure for con-
structing `1-normed vector spaces at a reduced dimensionality. The RMI method employs
a two-step procedure: (a) the creation of index vectors and (b) the construction of context
vectors.

In the first step, each context element is assigned exactly to one index vector ~ri. Index
vectors are high-dimensional and generated randomly such that entries r j of index vectors
have the following distribution:

ri =


−1
U1

with probability s
2

0 with probability 1 − s
1

U2
with probability s

2

, (4.14)

where U1 and U2 are independent uniform random variables in (0, 1). In the second
step, each target linguistic entity that is being analysed in the model is assigned to a
context vector ~vc in which all the elements are initially set to 0. For each encountered co-
occurrence of a linguistic entity and a context element—for example, through a sequential
scan of an input corpus—~vc that represents the linguistic entity is accumulated by the
index vector ~ri that represents the context element—that is, ~vc = ~vc + ~ri. This process
results in a VSM of a reduced dimensionality that can be used to estimate the `1 distances
between linguistic entities.

In the constructed VSM by RMI, the `1 distance between vectors is given by the
sample median Indyk (2000). For given vectors ~v and ~u, the approximate `1 distance
between vectors is estimated by

L̂1(~u,~v) = median{|vi − ui|, i = 1, · · · ,m}, (4.15)

where m is the dimension of the VSM constructed by RMI, and |.| denotes the modulus.
Similar to RI, RMI employs random projections (RPs): a high-dimensional VSM is

mapped onto a random subspace of lowered dimension expecting that—with a high prob-
ability—relative distances between vectors are approximately preserved. As suggested
earlier in Equation 4.4, using the matrix notation, this projection is given by

M′
p×m = Mp×n × Rn×m, m � p, n, (4.16)
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where R is often called the random projection matrix, and M and M′ denote p vectors in
the original n-dimensional and reduced m-dimensional vector spaces, respectively.

In RMI, the stated mapping in Equation 4.16 is given by Cauchy random projections.
Indyk (2000) suggests that vectors in a high-dimensional space Rn can be mapped onto
a vector space of lowered dimension Rm while the relative pairwise `1 distances between
vectors are preserved with a high probability. In Indyk (2000, Theorem 3) and Indyk
(2006, Theorem 5), it is shown that for an m ≥ m0 = log(1/δ)O(1/ε), where δ > 0 and
ε ≤ 1/2, there exists a mapping from Rn onto Rm that guarantees the `1 distances between
any pair of vectors ~u and ~v in Rn after the mapping does not increase by a factor more
than 1 + ε with constant probability δ, and it does not decrease by more than 1 − ε with
probability 1 − δ.

In Indyk (2000), this projection is proved to be obtained using a random projection
matrix R that has a Cauchy distribution—that is, for ri j in R, ri j ∼ C(0, 1). Since R has a
Cauchy distribution, for every two vectors ~u and ~v in the high-dimensional space Rn, the
projected differences x = ~̂u − ~̂v also have Cauchy distribution, with the scale parameter
being the `1 distances:

x ∼ C(0,
n∑

i=1

|ui − vi|). (4.17)

As a result, in Cauchy random projections, estimating the `1 distance between any two
vectors ~u and ~v boils down to the estimation of the Cauchy scale parameter from i.i.d.
samples x. Because the expectation value of x is infinite,1 the sample mean cannot be
employed to estimate the Cauchy scale parameter. Simply put, this means that

∑n
i=1 |ui−vi|

can be used to estimate distances at the reduced dimensionality. Instead, using the 1-
stability of Cauchy distribution, Indyk (2000) proves that the median can be employed to
estimate the Cauchy scale parameter, and thus the `1 distances at the projected space Rm.

Subsequent studies simplified the method proposed by Indyk (2000). Particularly, Li
(2007) shows that R with Cauchy distribution can be substituted by a sparse R that has
a mixture of symmetric 1-Pareto distribution. A 1-Pareto distribution can be sampled
by 1/U, where U is an independent uniform random variable in (0, 1). This results in a
random matrix R that has the same distribution as described by Equation 4.14.

The RMI’s two-step procedure is explained using the basic properties of matrix arith-
metic and the descriptions given above. Given the projection in Equation 4.16, the first
step of RMI refers to the construction of R: index vectors are the row vectors of R. The
second step of the process refers to the construction of M′: context vectors are the row
vectors of M′. Using the distributive property of multiplication over addition in matrices,2

it can be verified that the explicit construction of M and its multiplication to R can be sub-
stituted by a number of summation operations, exactly as explained from Equation 4.7 to
Equation 4.9 for projections in Euclidean spaces. That is, M can be represented by the
sum of unit vectors in which a unit vector corresponds to the co-occurrence of a linguistic
entity and a context element. The result of the multiplication of each unit vector and R is

1That is, E(x) = ∞, since x has a Cauchy distribution. Cauchy distribution is a heavy tailed distribution,
therefore, the expected value does not exist.

2That is, (A + B)C = AC + BC.
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the row vector that represents the context element in R—that is, the index vector. There-
fore, M′ can be computed by the accumulation of the row vectors of R that represent
encountered context elements, as stated in the second step of the RMI procedure.

4.3.1.1 Alternative distance estimators

As stated above, Indyk (2000) suggests using the sample median for the estimation of the
`1 distances. However, Li (2008) argues that sample median estimator can be biased and
inaccurate, particularly if the targeted reduced dimensionality (i.e., m) is small. Hence, Li
(2008) suggests using the geometric mean estimator instead of the median sample.1 Ac-
cordingly, the `1 distances at the reduced dimensionality can be estimated by

L̂1(~u,~v) =
( m∏

i=1

|ui − vi|
) 1

m . (4.18)

I suggest computing the L̂1(~u,~v) in Equation 4.18 using the arithmetic mean of logarithm-
transformed values of |ui − vi|. Therefore, with the help of the logarithmic identities, the
multiplications and the exponent power in Equation 4.18 are, respectively, transformed to
a sum and a multiplication:

L̂1(~u,~v) = exp
( 1
m

m∑
i=1

ln(|ui − vi|)
)
. (4.19)

For a computational implementation, Equation 4.19 for estimating L̂1 is more plausible
than Equation 4.18—for example, the overflow is less likely to happen during the pro-
cess. Moreover, calculating the median involves sorting an array of real numbers. Thus,
computation of the geometric mean in logarithmic scales can be faster than computation
of the median sample, particularly when the value of m is large.

4.3.1.2 RMI’s parameters

In order to employ the RMI method for the construction of an `1-normed VSM at a re-
duced dimensionality, two model parameters should be decided: (a) the targeted reduced
dimensionality of the VSM, which is indicated by m in Equation 4.16 and (b) the number
of non-zero elements in index vectors, which is determined by s in Equation 4.14. In
contrast to the classic one-dimension-per-context-element methods of VSM construction
and similar to RI,2 the value of m in RPs and thus in RMI is chosen independently of the
number of context elements in the model (n in Equation 4.16).

In RMI, m determines the probability and the maximum expected amount of distor-
tions ε in the pairwise distance between vectors. Based on the proposed refinements
of Indyk (2000, Theorem 3) by Li et al. (2007), it is verified that the pairwise `1 distance
between any p vectors is approximated within a factor 1 ± ε, if m = O(log p/ε2), with a
constant probability. Therefore, the value of ε in RMI is subject to the number of vectors

1See also Li et al. (2007, Lemma 5–9).
2That is, n context elements are modelled in an n-dimensional VSM.
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p in the model. For a fixed p, a larger m yields to lower bounds on the distortion with
a higher probability. Because a small m is desirable from the computational complexity
outlook, the choice of m is often a trade-off between accuracy and efficiency. Similar to
discussions in Section 4.2.1 for RI, m can be seen as the capacity of the model for ac-
commodating new vectors without causing a large amount of distortion in the distances
between vectors.1 According to my experimental experiences, m ≥ 400 is suitable for
most applications.

The number of non-zero elements in index vectors, however, is decided by the number
of context elements (i.e., n) and the sparseness of the VSM at its original dimension
(denoted by β). Li (2007) suggests 1

O(
√
βn) as the value of s in Equation 4.14. As discussed

elsewhere, because of the long tail distribution of context elements and linguistic entities
(e.g., the Zipfian distribution of words in documents), VSMs employed in distributional
semantics—and in general, text analysis—are highly sparse. The sparsity of a VSM in its
original dimension (i.e., β) is often considered to be around 10−4 ≤ β ≤ 10−2. However,
as the original dimension of VSM n is very large—otherwise there would be no need for
dimensionality reduction—the index vectors are often very sparse. Similar to m, larger s
produces smaller errors. However, during the construction of a VSM, a large s imposes
more processes than a small s.

It is important to note that the influence of s in RI and RMI is different. Whereas in
RI, a large s may cause further distortion in the relative estimated distances, in RMI a
larger s can help the estimated relative distances converge faster to the relative distances
in the original high-dimensional space. Based on the performed experiments and without
providing mathematical proofs, for an m-dimensional VSM, I suggest 2d m

2
√
αne non-zero

elements, in which half of them are positive and the other half are negative.

4.3.1.3 Empirical evaluation of RMI

This section reports the performance of the RMI method with respect to its ability to
preserve the relative `1 distance between linguistic entities in a VSM—similar to the ob-
servations reported earlier to evaluate RI.2 Therefore, instead of a task-specific evaluation,
it is shown that the relative `1 distance between a set of words in a high-dimensional word-
by-document model remains intact when the model is constructed at a reduced dimension-
ality using the RMI technique. This evaluation is repeated for a document-by-word model
using the same dataset used in Section 4.2.1.1 for RI, too. The effect of various settings
of the RMI’s parameters are then explored in the observed results.

The purpose of the reported evaluations is to show the ability of RMI in preserving
the relative `1 distances. Depending on the structure of the data that is being analysed and
the objective of the task in hand, the performance of the `1 distance for similarity meas-
urement can be better or worse than other similarity metrics (e.g., see the experiments in
Bullinaria and Levy, 2007). The evaluation designed in this section takes this fact into
the consideration. Hence, the purpose of the reported evaluations is not to show the su-
periority of RMI (thus the `1 distance) to dimensionality reduction techniques in normed

1Li et al. (2007) details the choice of m using mathematical arguments and observations over synthes-
ised date.

2See the experiment in Section 4.2.1.1.



4.3. Random Projections in `1-Normed Space 127

PoS Words

Noun
website email support software students skills project
research nhs link services organisations

Adjective
online digital mobile sustainable global unique excellent
disabled new current fantastic innovative

Verb use visit improve provided help ensure develop

Table 4.1: Words employed in the experiments. These words are the chosen examples in Ferraresi
et al. (2008).
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Figure 4.8: List of words sorted by their `1 distance to the word research. The distance increases
from left to right and top to bottom.

spaces other than `1 (e.g., RI or truncated SVD in `2-normed spaces) in a specific task.
If, in a task, the `1 distance shows higher performance than the `2 distance, then the RMI
technique is preferable to the RI technique or truncated SVD. Contrariwise, if the `2 norm
shows higher performance than the `1 norm, then RI or truncated SVD are more desirable
than the RMI method.

In the reported experiment, a word-by-document model is first constructed from uk-
WaC at its original high dimension. UkWaC is a freely available corpus of 2,692,692 web
documents, nearly 2 billion tokens and 4 million types (Baroni et al., 2009).1 Therefore, a
word-by-document model constructed from this corpus using the classic one-dimension-
per-context-element method has the maximum dimension of 2.69 million. In order to
keep the experiments computationally tractable, the reported results are limited to 31
words from this model, which are listed in Table 4.1. Figure 4.9 shows the increase in the
dimensionality of the VSM when a new word from this list is added to the VSM.

In the designed experiment, a word from the list is taken as the reference and its
`1 distance to the remaining 30 words is calculated using the vector representations in
the high-dimensional VSM. These 30 words are then sorted in ascending order by the
calculated `1 distance. The procedure is repeated for all of the 31 words in the list, one by
one. Therefore, the procedure results in 31 sorted lists, each containing 30 words. Figure
4.8 shows an example of such an obtained sorted list, in which the reference is the word
research.2

The procedure described above is replicated to obtain the lists of sorted words from

1UkWaC can be obtained from http://wacky.sslmit.unibo.it/doku.php?id=corpora.
2Please note that the number of possible arrangements of 30 words without repetition in a list in which

the order is important (i.e., all permutations of 30 words) is 30!. As a result, the probability of generating
the same sorted list of words when they are arranged by their `1 distance to another word is 1

30! .

http://wacky.sslmit.unibo.it/doku.php?id=corpora


128 Chapter 4. Random Projections in Distributional Semantic Models

5 10 15 20 25 30
0

1

2

·106

Number of Words in the VSM

D
im

en
si

on
al

ity
of

th
e

V
SM

Figure 4.9: The increase in the dimensionality of a word-by-document model constructed from
the ukWaC: Adding a new word to the model causes the VSM’s dimension to burst when it is
constructed using the classic one-document-per-dimension.

VSMs that are constructed at reduced dimensionality using the RMI technique, when the
method’s parameters—that is, the dimension of index vectors as well as the proportion
of zero and non-zero elements in them—are set differently. It is expected the obtained
relative `1 distances between each reference word and the 30 other words in an RMI-
constructed VSM to be the same as the obtained relative distances in the original high-
dimensional VSM. Therefore, for each VSM that is constructed by the RMI technique,
the resulting sorted lists of words are compared by the sorted lists that are obtained from
the original high-dimensional VSM.

Similar to the other experiments reported in this chapter, the Spearman’s rank correl-
ation coefficient (ρ) is employed to compare the sorted lists of words and thus the degree
of distance preservation in the RMI-constructed VSMs at reduced dimensionality. Hence,
given a list of sorted words obtained from the original high-dimensional VSM (listo) and
its corresponding list obtained from a VSM of reduced dimensionality (listRMI), the Spear-
man’s rank correlation for the two lists is calculated using Equation 4.10 (in which, di fi

is the difference in paired ranks of words in listo and listRMI , and n = 30 is the number
of words in each list). The average of ρ over the 31 lists of sorted words, denoted by
ρ̄, is reported to indicate the performance of RMI with respect to its ability for distance
preservation. The closer ρ̄ is to 1, the better the performance of RMI with respect to the
relative `1 distance preservation.

Figure 4.10 shows the observed results at a glance when the distances are estimated
using the median (Equation 4.15). As shown in the figure, when the dimension of the
VSM is above 400 and the number of non-zero elements is more than 12, the obtained
relative distances from the VSMs constructed by the RMI technique start to be analogous
to the relative distances that are obtained from the original high-dimensional VSM, that is,
a high correlation (ρ̄ > 0.90). For the baseline, the average correlation of ρ̄random = −0.004
between the sorted lists of words obtained from the high-dimensional VSM and 31×1000
lists of sorted words that are obtained by randomly assigned distances is reported.

Figure 4.11 shows the same results as Figure 4.10, however, in minute detail and only
for VSMs of dimension m ∈ {100, 400, 800, 3200}. In these plots, squares ( ) indicate the
ρ̄ while the error bars show the best and the worst observed ρ amongst all the sorted lists
of words. The minimum value of the ρ-axis is set to 0.611, which is the worst observed



4.3. Random Projections in `1-Normed Space 129

100
200

400
800

1600
3200 4 8 16

32

64

0.5

0.7

0.9
1

dimension

|non-zero elements|

ρ̄

0.4

0.6

0.8

ρ̄

Figure 4.10: The ρ̄ axis shows the observed average Spearman’ rank correlation between the
order of the words in the lists that are sorted by the `1 distance obtained from the original high-
dimensional VSM and the VSMs that are constructed by RMI at reduced dimensionality using
index vectors of various numbers of non-zero elements.
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Figure 4.11: Detailed observation of the obtained correlation between relative distances in RMI-
constructed VSMs and the original high-dimensional VSM. The `1 distance is estimated using the
median. The squares denote ρ̄ and the error bars show the best and the worst observed correlations.
The dashed-dotted line shows the random baseline.

correlation in the baseline (i.e., randomly generated distances). The dotted line (i.e., ρ =

.591) shows the best observed correlation in the baseline and the dashed-dotted line shows
the average correlation in the baseline (ρ = −0.004). As suggested in Section 4.3.1.2, it
can be verified that an increase in the dimension of VSMs (i.e., m) increases the stability of
the obtained results (i.e., the probability of preserving distances increases). Therefore, for
large values of m (i.e., m > 400), the difference between the best and the worst observed
ρ decreases; average correlation ρ̄ → 1, and the relative distances in RMI-constructed
VSMs become identical to those in the original high-dimensional VSM.

Figure 4.12 represents the obtained results in the same setting as above, however,
when the distances are approximated using the geometric mean (Equation 4.19). The ob-
tained average correlations ρ̄ from the geometric mean estimations are almost identical to
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Figure 4.12: The observed results when the `1 distance in RMI-constructed VSMs is estimated
using the geometric mean.

the median estimations. However, as expected, the geometric mean estimations are more
reliable for small values of m; particularly, when using the geometric mean, the worst
observed correlations are higher than those observed when using the median estimator.

This experiment is also repeated over the document-by-word models that have been
employed earlier in Section 4.2.1.1. Instead of the Euclidean distance, however, the con-
structed models are used to verify the ability of RMI-constructed VSMs to preserve `1

distances between vectors. Results are shown in Figure 4.13.

4.3.2 Random Manhattan Integer Indexing

The application of the RMI method is hindered by two obstacles: float arithmetic oper-
ations required for the construction and processing of the RMI-constructed VSMs and
the calculation of the product of large numbers when `1 distances are estimated using the
geometric mean.

The proposed method for the generation of index vectors in RMI results in index vec-
tors of non-zero elements that are real numbers. Consequently, index vectors and thus
context vectors are arrays of floating point numbers. These vectors must be stored and
accessed efficiently when the RMI technique is employed in an application. However,
storing and processing floating numbers are resource intensive, and therefore not desir-
able in real-world applications—particularly when dealing with large corpora. Even if
the requirement for the storage of index vectors is alleviated—for example, using a de-
randomisation technique for their generation—context vectors that are derived from these
index vectors are still arrays of float numbers and their storage and process is of high
space and time complexity.

To tackle this problem, I suggest substituting the value of non-zero elements of RMI’s
index vectors (given in Equation 4.14) from 1

U to integer values of b 1
U c, where b 1

U c ,
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Figure 4.13: The RMI’s ability to preserve relative `1 distances in a document-by-word model: The
performance is assessed using the observed ρ̄ over a set of 10,000 documents chosen randomly
from the WaCkypedia_EN in an experiment similar to Section 4.2.1.1. Figure 4.13a shows the
overall observed result when the RMI’ parameters are set differently. Figure 4.13b shows the same
results only when the dimension of VSM is 200. In this figure, the minimum value of the ρ̄-axis
is set to the best observed correlation ρ = 0.1375 when distances are generated randomly (first
baseline). The + and − marks show ρ̄ when `1 distance is estimated in RI-constructed VSMs
of dimensionality 1600 using the estimator in Equation 4.19 and the standard definition of the
`1 distance, respectively. Figure 4.13c plots the same observed results only for RMI and when
m ∈ {200, 400, 800}. These results are similar to the experiments with the word-by-document
model. It can be verified that an increase in the dimension of VSM results in an increase in ρ̄.

0—that is:

ri =


b 1

U1
c with probability s

2

0 with probability 1 − s
b 1

U2
c with probability s

2

. (4.20)

I argue that the resulting random projection matrix still has an asymptomatic Cauchy
distribution. Therefore, the proposed methodology to estimate the `1 distance between
vectors is still valid. The `1 distance between context vectors must be still estimated
using either the median or the geometric mean.

The use of the median estimator—for the reasons stated in Section 4.3.1.1—is not
plausible. On the other hand, the computation of the geometric mean can be laborious as
the overflow is highly likely to happen during its computation. Using the value of b 1

U c

for non-zero elements of index vectors, it is evident that for any pair of context vectors
~u = (u1, · · · , um) and ~v = (v1, · · · , vm), if ui , vi then |ui − vi| ≥ 1. Therefore, for ui , vi,
ln |ui − vi| ≥ 0 and thus

∑m
i=1 ln(|ui − vi|) ≥ 0. In this case, the exponent in Equation 4.19

is a scale factor that can be discarded without a change in the relative distances between
vectors.1 Based on the intuition that the distance between a vector and itself is zero and
the explanation given above, inspired by smoothing techniques and without being able to
provide mathematical proofs, I suggest estimating the relative distances between vectors

1Please note that according to the axioms in the distance definition, the distance between two numbers
is always a non-negative value. When index vectors consist of non-zero elements of real numbers, the value
of |ui − vi| can be between 0 and 1, that is, 0 < |ui − vi| < 1. Therefore, ln(|ui − vi|) can be a negative number
and thus the exponent scale is required to make sure that the result is a non-negative number.



132 Chapter 4. Random Projections in Distributional Semantic Models

20 40 60

−0.5

0

0.5

1

2 12 70

0.8
0.9

|non-zero elements|

ρ

m = 100

20 40 602 12 70

|non-zero elements|

m = 400

20 40 602 12 70

|non-zero elements|

m = 800

20 40 602 12 70

|non-zero elements|

m = 3200

Figure 4.14: The observed results when using the RMII method for the construction and estima-
tion of the `1 distances between vectors. The method is evaluated in the same setup as the RMI
technique.

using

L̂1(~u,~v) =

m∑
i=1

ui,vi

ln(|ui − vi|). (4.21)

In order to distinguish the above changes in RMI, the resulting technique is called
random Manhattan integer indexing (RMII). The experiment described in Section 4.3.1.2
is repeated using the RMII method. As shown in Figure 4.14, the obtained results are
almost identical to the observed results when using the RMI technique. While RMI per-
forms slightly better than RMII in lower dimensions—for example, m = 400—RMII
shows more stable behaviour than RMI at higher dimensions—for example m = 800.
However, in all these cases, RMII demands less memory and processing resources for its
computations.

4.4 Comparing RMI and RI
RMI and RI utilise a similar two-step procedure consisting of the creation of index vectors
and the construction of context vectors. In addition, both RMI and RI are incremental
techniques that construct a VSM at reduced dimensionality directly, without requiring the
VSM to be constructed at its original high dimension. Despite these similarities, RMI and
RI are motivated by different applications and mathematical theorems. RMI is justified
using asymptotic Cauchy random projections whereas RI is justified using asymptotic
Gaussian random projections.

As described above, RMI approximates the `1 distance using a non-linear estimator,
which has not yet been employed for the construction of VSMs and the calculation of
`1 distances in distributional approaches to semantics. In contrast, RI approximates the
`2 distance using a linear estimator. RI has initially been justified using the mathemat-
ical model of the sparse distributed memory (SDM). Later, as suggested in this chapter,
the RI method was explained using the lemma proposed by Johnson and Lindenstrauss
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Figure 4.15: Evaluation of RI for estimating `1 distances for m = 400 and m = 800 when the
distances are calculated using (a) the standard definition of distance in `1-normed spaces and (b)
the median estimator. The obtained results using RI do not show a correlation to the `1 distances
in the original high-dimensional VSM.

(1984)—which elucidates random projections in Euclidean spaces (see Section 4.2 for
details). Although both the RMI and RI methods can be established as α-stable random
projections—respectively for α = 1 and α = 2—the methods cannot be compared as they
address different goals. If, for a given task, the `1 norm outperforms the `2 norm, then
RMI is preferable to RI. Contrariwise, if the `2 norm outperforms the `1 norm, then RI
is preferable to RMI. As implied in the reported evaluations and stated above, RI and
RMI cannot be replaced with each other. As shown in the previous sections, using RI
for dimensionality reduction causes a large distortion in the relative `1 distances between
vectors. Reversely, RMI does not preserve the relative `2 distances between vectors.

To support the earlier claim that RI-constructed VSMs cannot be used for the `1 dis-
tance estimation, the RI method is evaluated in the experimental setup that has been used
for the evaluation of RMI and RMII. In these experiments, however, RI is employed to
construct vector spaces at reduced dimensionality and estimate the `1 distance using Equa-
tion 4.13 (the standard `1 distance definition) and Equation 4.15 (the median estimator)
for m ∈ 400, 800. As shown in Figure 4.15, the experiments support this claim.

4.5 Summary

In this chapter, the applications of random projections for constructing vector spaces with
reduced dimensionality are outlined. As discussed, these methods can be employed to
enhance the performance in distributional semantic models.

This chapter has two contributions in particular. First, in Section 4.2, the random
indexing method is explained mathematically; and its two-step procedure is delineated
using sparse asymptotic Gaussian random projections. Consequently, criteria for setting
the method’s parameters are suggested. Second, in Section 4.3, a novel technique, named
random Manhattan indexing (RMI), for the construction of `1-normed VSMs directly at
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reduced dimensionality is suggested. In addition, Section 4.3.2 introduces the random
Manhattan integer indexing (RMII) technique—that is, a computationally enhanced ver-
sion of the RMI technique. The ability of these methods to preserve `1 distances are
demonstrated using empirical evaluations.

As discussed, the use of random projections in the incremental way suggested in this
chapter has a number of benefits. First, it enhances the computational complexity of
the construction of models by combining the process of collecting co-occurrences with
the dimensionality reduction process. The result is a vector space model constructed
directly with reduced dimensionality. Second, because of the reduced dimensionality
of the vectors, the subsequent similarity computations are performed faster. Third, the
proposed incremental method provides the capability of updating a model at any time
during its use, which makes it suitable for frequently updated data, particularly, in the
context of big-text data analytics.

As suggested in Section 4.4, vector spaces that are constructed using random pro-
jections, such as the RI and RMI techniques, are limited to the specific normed space
that they are designed for. There are methods that claim they can overcome this restric-
tion—for example, Li et al.’s (2006a) conditional random sampling. However, they have
not yet been applied to the vector space models of semantics. The use of these methods
is one way to extend the presented research in this chapter. In the proposed methods in
this chapter, only one random projection is applied before estimating distances between
vectors. However, it is possible to use a chain of projections—for example, as it is used in
the implementations of neural network algorithms. Such combinations are also possible
for RMI and RI.

Last but not least, the design principles employed in this chapter to reintroduce RI
and propose RMI and RMII can be employed for normed spaces other than the `1 and
the `2-normed. This is an exciting future research that has not yet been investigated for
natural language processing applications. Random projections are a vibrant research topic
in modern mathematics and statistics and the future advances in these fields will most
definitely result in new efficient methods and techniques for big text data analytics.
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