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Abstract. Random indexing is a method for constructing vector spaces at a reduced

dimensionality. Previously, the method has been proposed using Kanerva’s sparse dis-

tributed memory model. Although intuitively plausible, this description fails to provide

mathematical justification for setting the method’s parameters. The random indexing

method is revisited using the principles of sparse random projections in Euclidean spaces

in order to complement its previous delineation.
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1 Introduction

In order to model any aspect of language, data-driven approaches to natural lan-
guage processing exploit patterns of co-occurrences. For example, distributional
semantic models collect patterns of co-occurrences and investigate similarities in
these patterns to quantify meanings. Vector spaces are mathematically well-defined
models that are often employed to serve this purpose [14].

In a vector space model (VSM), each element ~si of its standard basis—informally,
each dimension of the VSM—represents a contextual element. Given n context el-
ements, linguistic entities are expressed using vectors ~v as linear combinations of
~si and scalars αi ∈ R such that ~v = α1~s1 + · · · + αn~sn. The value of αi is ac-
quired from the frequency of the co-occurrences of the entity that ~v represents
and the context element that ~si represents. Therefore, the values assigned to the
coordinates of a vector—that is, αi—exhibit the correlation of an entity and con-
text elements in an n-dimensional real vector space Rn. In this VSM, a distance
function, therefore, is employed for the discovery of similarities. Amongst several
choices of distance metrics, the Euclidean distance is an innate choice. A VSM
is endowed with the `2 norm to estimate distances between vectors, which is ac-
cordingly called a Euclidean VSM (denoted by En). A classic document-by-term
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model is, perhaps, the most familiar example of the models described above for
constructing VSMs [13].

In distributional approaches to text analysis, when the number of entities in a
VSM increases, the number of context elements employed for capturing similar-
ities between them surges. As a result, high-dimensional vectors, in which most
elements are zero, represent entities. But, the proportional impact of context ele-
ments on similarities declines when their number increases. In a high-dimensional
model, except vectors vary in most dimensions, it becomes difficult to distinguish
similarities [2]. Moreover, the high-dimensionality of vectors hampers the com-
putation of distances. These setbacks are known as the curse of dimensionality.
A dimensionality reduction technique is often employed to solve these problems.

Dimensionality reduction can be achieved using a number of methods as an
auxiliary process followed by the construction of a VSM. This process improves
the computational performance by reducing the number of context elements em-
ployed for the construction of a VSM. In its simple form, dimension reduction can
be performed by choosing a subset of context elements using a heuristic-based se-
lection process. That is, a number of context elements that account for the most
discriminative information in VSM are chosen using a heuristic such as a statistical
weight threshold. Alternatively, a transformation method can be employed. This
process maps Rn onto a Rm, m � n, in which Rm is the best approximation
of Rn in a sense. For example, the well-known latent semantic analysis method
employs singular value decomposition (SVD) truncation, in which Rm gives the
best approximation of the Euclidean distances in Rn [5].

The use of these dimension reduction methods is hindered by a number of
factors. Firstly, a VSM at the original high dimension must be first constructed.
The VSM’s dimension is then reduced in an independent process. Hence, the
VSM at a reduced dimensionality is available for processing only after the whole
sequence of these processes. Construction of the VSM at its original dimension
is computationally expensive and a delay in access to the VSM at the reduced
dimension is not desirable.

Secondly, reducing the dimension of vectors using the methods listed above
is resource intensive. For instance, SVD truncation demands a process of the
time complexity O(n2m) and space complexity O(n2). Similarly, depending on the
employed heuristic, a selection process can be resource intensive too. Last but
not least, these methods are data-sensitive: if the structure of the data being
analysed changes—that is, if either the entities or context elements are updated—
the dimensionality reduction process is required to be repeated and reapplied to the
whole VSM in order to reflect the updates. As a result, these methods may not be
desirable in several applications, particularly when dealing with frequently-updated
big text-data.
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Random projections (RPs) are employed to implement alternative dimension-
ality reduction methods. In the remaining of this paper, I describe the use of
RPs in Euclidean spaces, which consequently arrives to the well-known random
indexing (RI) technique, which has been employed in a number of applications
(e.g., [?,?,15]). I then suggest a guideline for setting the method’s parameters.

2 Random Projections in Euclidean Spaces

In Euclidean spaces, RPs are elucidated using the Johnson and Lindenstrauss
lemma (JL lemma) [7]. Given an ε, 0 < ε < 1, the JL lemma states that for any set
of p vectors in an En, there exists a mapping onto an Em, for m ≥ m0 = O(log p/ε2),
that does not distort the distances between any pair of vectors, with high proba-
bility, by a factor more than 1± ε. This mapping is given by

M
′
p×m = Mp×nRn×m, m� p, n, (1)

where Rn×m is called the RP matrix, and Mp×n and M
′
p×m denote the p vectors

in En and Em, respectively. According to the JL lemma, if the distance between
any pair of vectors ~v and ~u in M is given by the dEuc(~v, ~u), and their distance in
M

′
is given by d′Euc(v,u), then there exists an R such that (1 − ε)d′Euc(v,u) ≤

dEuc(v,u) ≤ (1+ε)d′Euc(v,u). Accordingly, instead of the original high-dimensional
En and at the expense of negligible amount of error ε, the distance between ~v and
~u can be calculated in Em to reduce the computational cost of processes.

The JL lemma does not specify the projection matrix R. Establishing a random
matrix R is therefore the most important design decision when using RPs. In
[7], the lemma was proved using an orthogonal projection. Subsequent studies
simplified the original proof that resulted in projection techniques with enhanced
computational efficiency (see [3] for references). Recently, it is shown that a sparse
R, whose elements rij are defined as

rij =
√
s


−1 with probability 1

2s

0 with probability 1− 1
s

1 with probability 1
2s

, (2)

for s ∈ {1, 3}, results in a mapping that also satisfies the JL lemma [1]. Subsequent
research showed that R can be constructed from even sparser vectors than what
is suggested in [1]. In [9], it is proved that in a mapping of an n-dimensional real
vector space by a sparse R, the JL lemma holds as long as s = O(n), such as
s =
√
n or even s = n/log(n). The sparseness of R consequently enhances the time

and space complexity of the method by the factor 1
s
.

Another benefit when computing M′ is obtained using the linearity of matrix
multiplication. As stated earlier, each vector ~vei in En (i.e., the ith row of M) is
given by a linear combination of the basis vectors ~vei = wi1~sc1+· · ·+win~scn (i ≤ p



4 Behrang Q. Zadeh

and j ≤ n). By the basic properties of the matrix multiplication, the projection of
~vei in M′ is given by ~v

′
ei

= ~veiR = wi1~sc1R + · · · + win~scnR. In turn, since by

definition all the elements of ~sck are zero except the kth element (i.e., 1), ~v
′
ei

can
be equally written as

~v
′

ei
= wi1~r1 + · · ·+ win~rn, (3)

where ~rj is the jth row of R. Equation 3 means that row vectors v
′
ei

, thus M′,
can be computed directly without necessarily constructing the whole matrix M.
The jth row of Rn×m represents a context element in the original VSM that is
located at the jth column of Mp×n. Therefore, an entity at a reduced dimension
can be computed directly by accumulating the row vectors of R that represent the
context elements that co-occur with the entity.

The explanations above results in a two-step procedure similar to what is earlier
suggested as the RI technique [8][12]: the construction of (a) index vectors and
(b) context vectors. In the first step, each context element is assigned exactly to
one index vector. [12] indicates that index vectors are high-dimensional randomly
generated vectors, in which most of the elements are set to 0 and only a few to
1 and −1. In the second step, the construction of context vectors, each target
entity is assigned to a vector of which all elements are zero and has the same
dimension as the index vectors. For each occurrence of an entity (represented by
~vei) and a context element (represented by ~rck), the context vector is accumulated
by the index vector (i.e., ~vei = ~vei + ~rck). The result is a vector space model
constructed directly at reduced dimension. As can be understood, the first step
of RI is equivalent to the construction of the random projection matrix R, whose
elements are given by Equation 2. Each index vector is a row of the random
projection matrix R. The second step of RI deals with the computation of M

′
.

Each context vector is a row of M
′
, which is computed by the iterative process

justified in Equation 3.

Compared to the justification of RI, which are based on Kanerva’s sparse dis-
tributed memory (e.g., [8,12]), and whereas in previous research the method’s
parameters are left to be decided through experiments (e.g., [10,11]), we leverage
the adopted mathematical framework to provide a guideline for setting these pa-
rameters. In an RI-constructed VSM at reduced dimension m (i.e., Em), the degree
of preservation of distances in En and Em is determined by the number of vectors
in the model and the value of m. If the number of vectors is fixed, then the larger
m is, the better the Euclidean distances are preserved at the reduced dimension m.
In other words, the probability of preserving the pairwise distances increases as m
increases. Hence, m can be seen as the capacity of an RI-constructed VSM for ac-
commodating new entities. Compared to m = 4000 suggested in [8] or m = 1800
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in [12], depending on the number of entities that are modelled in an experiment,
m can be set to a smaller value such as 400.

Based on the proofs in [9], when embedding En onto Em, the JL lemma holds
as long as s in Equation 2 is O(n). In text processing applications, the number
of context elements (i.e., n) is often very large. When using RI, therefore, even a
careful choice such as s =

√
n in Equation 2 results in highly-sparse index vectors.

Hence, by setting only 2 or 4 non-zero elements in index vectors, distances in the
RI-constructed Em resembles distances in En. If the dimension of index vectors
(i.e., m) is fixed, then increasing the number of non-zero elements in index vectors
causes additional distortions in pairwise distances. For index vectors of fixed di-
mensionality m, if the number of non-zero elements increases, then the probability
of the orthogonality between index vectors decreases; hence, it stimulates distor-
tions in pairwise distances (although in some applications, distortions in pairwise
distances can be beneficial).

Lastly, it is important to note that RI-constructed VSMs can be only used for
estimating similarity measures that are derived from the `2 norm. For instance, the
use of RI-constructed VSMs for estimating city block distances (e.g., as suggested
in [?]) is not justified, at least mathematically. Hence, techniques other than RI
must be used (e.g., see [6,4,17,16]).1
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