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Abstract

We introduce positive-only projection
(PoP), a new algorithm for construct-
ing semantic spaces and word embed-
dings. The PoP method employs ran-
dom projections. Hence, it is highly
scalable and computationally efficient.
In contrast to previous methods that
use random projection matrices R with
the expected value of 0 (i.e., E(R) =
0), the proposed method uses R with
E(R) > 0. We use Kendall’s τb cor-
relation to compute vector similarities
in the resulting non-Gaussian spaces.
Most importantly, since E(R) > 0,
weighting methods such as positive
pointwise mutual information (PPMI)
can be applied to PoP-constructed
spaces after their construction for ef-
ficiently transferring PoP embeddings
onto spaces that are discriminative
for semantic similarity assessments.
Our PoP-constructed models, com-
bined with PPMI, achieve an average
score of 0.75 in the MEN relatedness
test, which is comparable to results ob-
tained by state-of-the-art algorithms.

1 Introduction

The development of data-driven methods of
natural language processing starts with an ed-
ucated guess, a distributional hypothesis: We
assume that some properties of linguistic enti-
ties can be modelled by ‘some statistical’ ob-
servations in language data. In the second
step, this statistical information (which is de-
termined by the hypothesis) is collected and

represented in a mathematical framework. In
the third step, tools provided by the chosen
mathematical framework are used to imple-
ment a similarity-based logic to identify lin-
guistic structures, and/or to verify the pro-
posed hypothesis. Harris’s distributional hy-
pothesis (Harris, 1954) is a well-known ex-
ample of step one that states that meanings
of words correlate with the environment in
which the words appear. Vector space mod-
els and η-normed-based similarity measures
are notable examples of steps two and three,
respectively (i.e., word space models or word
embeddings).

However, as pointed out for instance by
Baroni et al. (2014), the count-based mod-
els resulting from the steps two and three are
not discriminative enough to achieve satisfac-
tory results; instead, predictive models are re-
quired. To this end, an additional transforma-
tion step is often added. Turney and Pantel
(2010) describe this extra step as a combina-
tion of weighting and dimensionality reduc-
tion.1 This transformation from count-based
to predictive models can be implemented sim-
ply via a collection of rules of thumb (such
as frequency threshold to filter out highly fre-
quent and/or rare context elements), and/or
it can involve more sophisticated mathemat-
ical transformations, such as converting raw
counts to probabilities and using matrix fac-
torization techniques. Likewise, by exploit-
ing the large amounts of computational power
available nowadays, this transformation can
be achieved via neural word embedding tech-

1Similar to topics of feature weighting, selection, and en-
gineering in statistical machine learning.



niques (Mikolov et al., 2013; Levy and Gold-
berg, 2014).

To a large extent, the need for such trans-
formations arises from the heavy-tailed distri-
butions that we often find in statistical natural
language models (such as the Zipfian distribu-
tion of words in contexts when building word
spaces). Consequently, count-based models
are sparse and high-dimensional and therefore
both computationally expensive to manipulate
(due of the high dimensionality of models)
and nondiscriminatory (due to the combina-
tion of the high-dimensionality of the models
and the sparseness of observations—see Min-
sky and Papert (1969, chap. 12)).2

On the one hand, although neural net-
works are often the top performers for ad-
dressing this problem, their usage is costly:
they need to be trained, which is often very
time-consuming,3 and their performance can
vary from one task to another depending on
their objective function.4 On the other hand,
although methods based on random projec-
tions efficiently address the problem of re-
ducing the dimensionality of vectors—such as
random indexing (RI) (Kanerva et al., 2000),
reflective random indexing (RRI), (Cohen et
al., 2010), ISA (Baroni et al., 2007) and ran-
dom Manhattan indexing (RMI) (Zadeh and
Handschuh, 2014)—in effect they retain dis-
tances between entities in the original space.5

Moreover, since these methods use asymp-
totic Gaussian or Cauchy random projection
matrices R with E(R) = 0, their resulting
vectors cannot be adjusted and transformed
using weighting techniques such as PPMI.
Consequently, these methods often do not out-
perform neural embeddings and combinations
of PPMI weighting of count-based models
followed by matrix factorization—such as the
truncation of weighted vectors using singular

2That is, the well known curse of dimensionality problem.
3Baroni et al. (2014) state that it took Ronan Collobert

two months to train a set of embeddings from a Wikipedia
dump. Even using GPU-accelerated computing, the required
computation and training time for inducing neural word em-
beddings is high.

4Ibid, see results reported in supplemental materials.
5For η-normed space that they are designed for, i.e., η = 2

for RI, RRI, and ISA and η = 1 for RMI.

value decomposition (SVD).
To overcome these problems, we propose

a new method called positive-only projec-
tion (PoP). PoP is an incremental seman-
tic space construction method which employs
random projections. Hence, building mod-
els using PoP does not require training but
simply generating random vectors. However,
in contrast to RI (and previous methods), the
PoP-constructed spaces can undergo weight-
ing transformations such as PPMI, after their
construction and at a reduced dimensional-
ity. This is due to the fact that PoP uses ran-
dom vectors that contain only positive inte-
ger values. Because the PoP method employs
random projections, models can be built in-
crementally and efficiently. Since the vec-
tors in PoP-constructed models are small (i.e.,
with a dimensionality of a few hundred), ap-
plying weighting methods such as PPMI to
these models is incredibly faster than applying
them to classical count-based models. Com-
bined with a suitable weighting method such
as PPMI, the PoP algorithm yields competi-
tive results concerning accuracy in semantic
similarity assessments, compared for instance
to neural net-based approaches and combina-
tions of count-based models with weighting
and matrix factorization. These results, how-
ever, are achieved without the need for heavy
computations. Thus, instead of hours, mod-
els can be built in a matter of a few seconds
or minutes. Note that even without weighting
transformation, PoP-constructed models dis-
play a better performance than RI on tasks of
semantic similarity assessments.

We describe the PoP method in § 2. In order
to evaluate our models, in § 3, we report the
performance of PoP in the MEN relatedness
test. Finally, § 4 concludes with a discussion.

2 Method

2.1 Construction of PoP Models
A transformation of a count-based model to a
predictive one can be expressed using a matrix
notation such as:

Cp×n ×Tn×m = Pp×m. (1)



In Equation 1, C denotes the count-based
model consisting of p vectors and n con-
text elements (i.e., n dimensions). T is
the transformation matrix that maps the
p n-dimensional vectors in C to an m-
dimensional space (often, but not necessarily,
m 6= n and m � n). Finally, P is the result-
ing m-dimensional predictive model. Note
that T can be a composition of several trans-
formations, e.g., a weighting transformation
W followed by a projection onto a space
of lower dimensionality R, i.e., Tn×m =
Wn×n ×Rn×m.

In the proposed PoP technique, the transfor-
mation Tn×m (for m � n, e.g., 100 ≤ m ≤
7000) is simply a randomly generated matrix.
The elements tij of Tn×m have the following
distribution:

tij =

{
0 with probability 1− s
b 1

Uα c with probability s
, (2)

in which U is an independent uniform random
variable in (0, 1], and s is an extremely small
number (e.g., s = 0.01) such that each row
vector of T has at least one element that is
not 0 (i.e.,

∑m
i=1 tji 6= 0 for each row vec-

tor tj ∈ T). For α, we choose α = 0.5.
Given Equations 1 and 2 and using the dis-
tributive property of multiplication over addi-
tion in matrices,6 the desired semantic space
(i.e., P in Equation 1) can be constructed
using the two-step procedure of incremental
word space construction (such as used in RI,
RRI, and RMI):

Step 1. Each context element is mapped to
one m-dimensional index vector ~r. ~r is ran-
domly generated such that most elements in ~r
are 0 and only a few are positive integers (i.e.,
the elements of ~r have the distribution given
in Equation 2).

Step 2. Each target entity that is being anal-
ysed in the model is represented by a context
vector ~v in which all the elements are initially
set to 0. For each encountered occurrence of
this target entity together with a context ele-

6That is (A+B)×C = A×C+B×C.

ment (e.g., through a sequential scan of a cor-
pus), we update ~v by adding the index vector
~r of the context element to it.

This process results in a model built di-
rectly at the reduced dimensionality m (i.e.,
P in Equation 1). The first step corresponds
to the construction of the randomly generated
transformation matrix T: Each index vector
is a row of the transformation matrix T. The
second step is an implementation of the ma-
trix multiplication in Equation 1 which is dis-
tributed over addition: Each context vector is
a row of P, which is computed in an iterative
process.

2.2 Measuring Similarity
Once P is constructed, if desirable, similar-
ities between entities can be computed by
their Kendall’s τb (−1 ≤ τb ≤ 1) correla-
tion (Kendall, 1938). To compute τb, we adopt
an implementation of the algorithm proposed
by Knight (1966), which has a computational
complexity of O(n log n).7

In order to compute τb, we need to define
a number of values. Given vectors ~x and ~y
of the same dimension, we call a pair of ob-
servations (xj, yj) and (xj+1, yj+1) in ~x and ~y
concordant if (xj < xj+1∧yj < yj+1)∨(xj >
xj+1 ∧ yj > yj+1). The pair is called discor-
dant if (xj < xj+1 ∧ yj > yj+1) ∨ (xj >
xj+1 ∧ yj < yj+1). Finally, the pair is called
tied if xj = xj+1 ∨ yj = yj+1. Note that a
tied pair is neither concordant nor discordant.
We define n1 and n2 as the number of pairs
with tied values in ~x and ~y, respectively. We
use nc and nd to denote the number of concor-
dant and discordant pairs, respectively. If m
is the dimension of the two vectors, then n0

is defined as the total number of observation
pairs: n0 = m(m−1)

2
. Given these definitions,

Kendall’s τb is given by

τb =
nc − nd√

(n0 − n1)(n0 − n2)
.

The choice of τb can be motivated by gener-
alising the role that cosine plays for comput-

7In our evaluation, we use the implementation of Knight’s
algorithm in the Apache Commons Mathematics Library.



ing similarities between vectors that are de-
rived from a standard Gaussian random pro-
jection. In random projections with R of
(asymptotic) N (0, 1) distribution, despite the
common interpretation of the cosine similar-
ity as the angle between two vectors, cosine
can be seen as a measure of the product-
moment correlation coefficient between the
two vectors. Since R and thus the obtained
projected spaces have zero expectation, Pear-
son’s correlation and the cosine measure have
the same definition in these spaces (see also
Jones and Furnas (1987) for a similar claim
and on the relationships between correlation
and the inner product and cosine). Subse-
quently, one can propose that in Gaussian ran-
dom projections, Pearson’s correlation is used
to compute similarities between vectors.

However, the use of projections proposed
in this paper (i.e., T with a distribution set
in Equation 2) will result in vectors that have
a non-Gaussian distribution. In this case, τb
becomes a reasonable candidate for measur-
ing similarities (i.e., correlations between vec-
tors) since it is a nonparametric correlation
coefficient measure that does not assume a
Gaussian distribution (see Chen and Popovich
(2002)) of projected spaces. However, we do
not exclude the use of other similarity mea-
sures and may employ them in future work.
In particular, we envisage additional transfor-
mations of PoP-constructed spaces to induce
vectors with Gaussian distributions (see for
instance the log-based PPMI transformation
used in the next section). If a transformation
to a Gaussian-like distribution is performed,
then it is expected that the use of Pearson’s
correlation, which works under the assump-
tion of Gaussian distribution, yields better re-
sults than Kendall’s correlation (as confirmed
by our experiments).

2.3 Some Delineation of the PoP Method

The PoP method is a randomized algorithm.
In this class of algorithms, at the expense of
a tolerable loss in accuracy of the outcome
of the computations (of course, with a cer-
tain acceptable amount of probability) and by

the help of random decisions, the computa-
tional complexity of algorithms for solving a
problem is reduced (see, e.g., Karp (1991), for
an introduction to randomized algorithms).8

For instance, using Gaussian-based sparse
random projections in RI, the computation
of eigenvectors (often of the complexity of
O(n2 logm)) is replaced by a much simpler
process of random matrix construction (of an
estimated complexity of O(n))—see Bingham
and Mannila (2001). In return, randomized al-
gorithms such as the PoP and RI methods give
different results even for the same input.

Assume the difference between the opti-
mum result and the result from a randomized
algorithm is given by δ (i.e., the error caused
by replacing deterministic decisions with ran-
dom ones). Much research in theoretical com-
puter science and applied statistics focuses
on specifying bounds for δ, which is often
expressed as a function of the probability ε
of encountered errors. For instance, δ and ε
in Gaussian random projections are often de-
rived from the lemma proposed by Johnson
and Lindenstrauss (1984) and its variations.
Similar studies for random projections in `1-
normed spaces and deep neural networks are
Indyk (2000) and Arora et al. (2014), respec-
tively.

At this moment, unfortunately, we are not
able to provide a detailed mathematical ac-
count for specifying δ and ε for the results ob-
tained by the PoP method (nor are we able to
pinpoint a theoretical discussion about PoP’s
underlying random projection). Instead, we
rely on the outcome of our simulations and
the performance of the method in an NLP
task. Note that this is not an unusual situa-
tion. For instance, Kanerva et al. (2000) pro-
posed RI with no mathematical justification.
In fact, it was only a few years later that Li
et al. (2006) proposed mathematical lemmas
for justifying very sparse Gaussian random
projections such as RI (QasemiZadeh, 2015).
At any rate, projections onto manifolds is a
vibrant research both in theoretical computer

8Such as many classic search algorithms that are proposed
for solving NP-complete problems in artificial intelligence.



science and in mathematical statistics. Our re-
search will benefit from this in the near future.
If δ refers to the amount of distortion in pair-
wise `2 norm correlation measures in a PoP
space,9 it can be shown that δ and its variance
σ2
δ are functions of the dimension m of the

projected space, that is: σ2
δ ≈ 1

m
, based on

similar mathematical principles proposed by
Kaski (1998) (and of Hecht-Nielsen (1994))
for the random mapping.

Our empirical research and observations on
language data show that projections using the
PoP method exhibit similar behavioural pat-
terns as other sparse random projections in α-
normed spaces. The dimension m of random
index vectors can be seen as the capacity of
the method to memorize and distinguish en-
tities. For m up to a certain number (100 ≤
m ≤ 6000) in our experiments, as was ex-
pected, a PoP-constructed model for a largem
shows a better performance and smaller δ than
a model for a small m. Since observations in
semantic spaces have a very-long-tailed distri-
bution, choosing different values of non-zero
elements for index vectors does not effect the
performance (as mentioned, in most cases 1,
2 or 3 non-zero elements are sufficient). Fur-
thermore, changes in the adopted distribution
of tij only slightly affect the performance of
the method.

In the next section, using empirical inves-
tigations we show the advantages of the PoP
model and support the claims from this sec-
tion.

3 Evaluation & Empirical Investigations

3.1 Comparing PoP and RI
For evaluation purposes, we use the MEN re-
latedness test set (Bruni et al., 2014) and the
UKWaC corpus (Baroni et al., 2009). The
dataset consists of 3000 pairs of words (from
751 distinct tagged lemmas). Similar to other
‘relatedness tests’, Spearman’s rank correla-
tion ρ score from the comparison of human-
based ranking and system-induced rankings is
the figure of merit. We use these resources

9As opposed to pairwise correlations in the original high-
dimensional space.

for evaluation since they are in public domain,
both the dataset and corpus are large, and they
have been used for evaluating several word
space models—for example, see Levy et al.
(2015), Tsvetkov et al. (2015), Baroni et al.
(2014), Kiela and Clark (2014). In this sec-
tion, unless otherwise stated, we use cosine
for similarity measurements.

Figure 1 shows the performance of the
simple count-based word space model for
lemmatized-context-windows that extend
symmetrically around lemmas from MEN.10

As expected, up to a certain context-window
size, the performance using count-based
methods increases with an extension of the
window.11 For context-windows larger than
25+25 the performance gradually declines.
More importantly, in all cases, we have
ρ < 0.50.

We performed the same experiments us-
ing the RI technique. For each context win-
dow size, we performed 10 runs of the RI
model construction. Figure 1 reports for each
context-window size the average of the ob-
served performances for the 10 RI models. In
this experiment, we used index vectors of di-
mensionality 1000 containing 4 non-zero el-
ements. As shown in Figure 1, the average
performance of the RI is almost identical to
the performance of the count-based model.
This is an expected result since RI’s objec-
tive is to retain Euclidean distances between
vectors (thus cosine) but in spaces of lowered
dimensionality. In this sense, RI is successful
and achieves its goal of lowering the dimen-
sionality while keeping Euclidean distances
between vectors. However, using RI+cosine
does not yield any improvements in the simi-
larity assessment task.

We then performed similar experiments us-
ing PoP-constructed models, with the same
context window sizes and the same dimen-

10We use the tokenized preprocessed UKWaC. However,
except for using part-of-speech tags for locating lemmas
listed in MEN, we do not use any additional information or
processes (i.e., no frequency cut-off for context selection, no
syntactic information, etc.).

11After all, in models for relatedness tests, relationships of
topical nature play a more important role than other relation-
ships such as synonymy.
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Figure 1: Performance of the classic count-
based a-word-per-dimension model vs. RI vs.
Pop in the MEN relatedness test. Note that
count-based and RI models show almost an
identical performance in this task.

sions as in the RI experiments, averaging
again over 10 runs for each context window
size. The performance is also reported in
Figure 1. For the PoP method, however, in-
stead of using the cosine measure we use
Kendall’s τb for measuring similarities. The
PoP-constructed models converge faster than
RI and count-based methods and for smaller
context-windows they outperform the count-
based and RI methods with a large margin.
However, as the sizes of the windows grow,
performances of these methods become more
similar (but PoP still outperforms the others).
In any case, the performance of PoP remains
above 0.50 (i.e., ρ > 0.50). Note that in RI-
constructed models, using Kendall’s τb also
yield better performance than using cosine.

3.2 PPMI Transformation of PoP Vectors

Although PoP outperforms RI and count-
based models, compared to the state-of-the-
art methods, its performance is still not satis-
fying. Transformations based on association
measures such as PPMI have been proposed to
improve the discriminatory power of context
vectors and thus the performance of models
in semantic similarity assessment tasks (see
Church and Hanks (1990), Turney (2001),
Turney (2008), and Levy et al. (2015)). For
a given set of vectors, pointwise mutual in-
formation (PMI) is interpreted as a measure
of information overlap between vectors. As
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Figure 2: Performances of (P)PMI-
transformed models for various sizes of
context-windows. From context size 4+4,
the performance remains almost intact
(0.72 for PMI and 0.75 for PPMI). We
also report the average performance for
PoP-constructed models constructed at the
dimensionality m = 1000 and s = 0.002.
PoP+PPMI+Pearson exhibits a performance
similar as dense PPMI-weighted models,
however, much faster and using far less
amount of computational resources. Note
that reported PoP+PMI performances can be
enhanced by using m > 1000.

put by Bouma (2009), PMI is a mathemati-
cal tool for measuring how much the actual
probability of a particular co-occurrence (e.g.,
two words in a word space) deviate from the
expected probability of their individual oc-
currences (e.g., the probability of occurrences
of each word in a words space) under the
assumption of independence (i.e., the occur-
rence of one word does not affect the occur-
rences of other words).

In Figure 2, we show the performance
of PMI-transformed spaces. Count-based
PMI+Cosine models outperform other tech-
niques including the introduced PoP method.
The performance of PMI models can be fur-
ther enhanced by their normalization, often
discarding negative values12 and using PPMI.
Also, SVD truncation of PPMI-weighted
spaces can improve the performance slightly
(see the above mentioned references) re-
quiring, however, expensive computations of

12See Bouma (2009) for a mathematical delineation. Juraf-
sky and Martin (2015) also provide an intuitive description.



eigenvectors.13 For a p × n matrix with el-
ements vxy, 1 ≤ x ≤ p and 1 ≤ y ≤ n,
we compute the PPMI weight for a compo-
nent vxy as follows:

ppmi(vxy) = max(0, log
vxy×

∑p
i=1

∑n
j=1 vij∑p

i=1 viy×
∑n
j=1 vxj

). (3)

The most important benefit of the PoP
method is that PoP-constructed models,
in contrast to previously suggested ran-
dom projection-based models, can be still
weighted using PPMI (or any other weighting
techniques applicable to the original count-
based models). In an RI-constructed model,
the sum of values of row and column vec-
tors of the model are always 0 (i.e.,

∑p
i=1 viy

and
∑n

j=1 vxj in Equation 3 are always 0).
As mentioned earlier, this is due to the fact
that a random projection matrix in RI has
an asymptotic standard Gaussian distribution
(i.e., transformation matrix R has E(R) = 0).
As a result, PPMI weights for the RI-induced
vector elements are undefined. In contrast to
RI, the sum of values of vector elements in
the PoP-constructed models is always greater
than 0 (because the transformation is carried
out by a projection matrix R of E(R) > 0).
Also, depending on the structure of data in the
underlying count-based model, by choosing a
suitably large value of s, it can be guaranteed
that the sum of column vectors is always a
non-zero value. Hence, vectors in PoP models
can undergo the PPMI transformation defined
in Equation 3. Moreover, the PPMI transfor-
mation in PoP models is much faster, com-
pared to the one performed on count-based
models, due to the low dimensionality of vec-
tors in the PoP-constructed model. Therefore,
the PoP method makes it possible to benefit
both from the high efficiency of randomized
techniques as well as from the high accuracy
of PPMI transformation in semantic similarity
tasks.

If we put aside the information-theoretic
interpretation of PPMI weighting (i.e., dis-
tilling statistical information that matters),

13In our experiments, applying SVD truncation to models
results in negligible improvements between 0.01 and 0.001.

the logarithmic transformation of probabili-
ties in the PPMI definition plays the role of a
power transformation process for converting
long-tailed distributions in the original high-
dimensional count-based models to Gaussian-
like distributions in the transformed models.
From a statistical perspective, any variation of
PMI transformation can be seen as an attempt
to stabilize the variance of vector coordinates
and therefore to make the observations more
similar/fit to Gaussian distribution (a practice
with a long history in research, particularly in
the biological and psychological sciences).

To exemplify this phenomenon, in Figure 3,
we show histograms of the distributions of the
assigned weights to the vector that represents
the lemmatized form of the verb ‘abandon’ in
various models. As shown, the raw collected
frequencies in the original high-dimensional
count-based model have a long tail distribu-
tion (see Figure 3a). Applying the log trans-
formation to this vector yields a vector of
weights with a Gaussian distribution (Fig-
ure 3b). Weights in the RI-constructed vec-
tor (Figure 3c) have a perfect Gaussian distri-
bution but with an expected value of 0 (i.e.,
N (0, 1)). The PoP method, however, largely
preserves the long tail distribution of coor-
dinates from the original space (Figure 3d),
which in turn can be weighted using PPMI
and thereby transformed into a Gaussian-like
distribution.

Given that models after the PPMI trans-
formation have bell-shaped Gaussian distri-
butions, we expect that a correlation mea-
sure such as Pearson’s r, which takes advan-
tage of the prior knowledge about the distribu-
tion of data, outperforms the non-parametric
Kendall’s τb for computing similarities in
PPMI-transformed spaces.14 This is indeed
the case (see Figure 2).

14Note that using correlation measures such as Pearson’s r
and Kendall’s τb in count-based model may excel measures
such as cosine. However, their application is limited due to
the high-dimensionality of count-based methods.
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Figure 3: A histogram of the distribution of frequencies of weights (i.e., the value of the coor-
dinates) in various models built from 1+1 context-windows for the lemmatized form of the verb
‘abandon’ in the UKWaC corpus.

3.3 PoP’s Parameters, its Random
Behavior and Performance

As discussed in § 2.3, PoP is a randomized al-
gorithm and its performance is influenced by
a number of parameters. In this section, we
study the PoP method’s behavior by report-
ing its performance in the MEN relatedness
test under different parameter settings. To
keep evaluations and reports to a manageable
size, we focus on models built using context-
windows of size 4+4.

Figure 4 shows the method’s performance
when the dimension m of the projected in-
dex vectors increases. In these experiments,
index vectors are built using 4 non-zero ele-
ments; thus, as m increases, s in Equation 2
decreases. For each m, 100 ≤ m ≤ 5000,
the models are built 10 times and the aver-
age as well as the maximum and the minimum
observed performances in these experiments
are reported. For PPMI transformed PoP
spaces, with increasing dimensions, the per-
formance boosts and, furthermore, the vari-
ance in performance (i.e., the shaded areas)15

gets smaller.
However, for the count-based PoP method

without PPMI transformation (shown by the
dash-dotted lines) and with the number of
non-zero elements fixed to 4, increasing m
over 2000 decreases the performance. This
is unexpected since an increase in dimension-
ality is usually assumed to entail an increase
in performance. This behavior, however, can

15Evidently, the probability of worst and best perfor-
mances can be inferred from the reported average results.
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Figure 4: Changes in PoP’s performance
when the dimensionality of models increases.
The average performance in each set-up is
shown by the marked lines. The margins
around these lines show the minimum and
maximum performance observed in 10 inde-
pendent executions.

be the result of using a very small s; simply
put, the number of non-zero elements are not
sufficient to build projected spaces with ade-
quate distribution. To investigate this matter,
we study the performance of the method with
the dimension m fixed to 3000 but with index
vectors built using different numbers of non-
zero elements, i.e., different values of s.

Figure 5 shows the observed performances.
For PPMI-weighted spaces, increasing the
number of non-zero elements clearly deteri-
orates the performance. For unweighted PoP
models, an increase in s up to the limit that
does not result in non-orthogonal index vec-
tors enhances performances. As shown in Fig-
ure 6, when the dimensionality of the index
vectors is fixed and s increases, the chances of
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Figure 5: Changes in PoP’s performances
when the dimensionality of models are fixed
to m = 3000 and the number of non-zero
elements in index vectors (i.e., s) increases.
The average performances in each set-up are
shown by marked lines. The margins around
these lines show the minimum and maximum
performance observed in 10 independent exe-
cutions.

having non-orthogonal vectors in index vec-
tors are boosted. Hence, the chance of distor-
tions in similarities increases. These distor-
tions can enhance the result if they are con-
trolled (e.g., using a training procedure such
as the one used in neural net embedding).
However, when left to chance, they can of-
ten lower the performance. Evidently, this is
an oversimplified justification: in fact, s plays
the role of a switch that controls the resem-
blance between the distribution of data in the
original space and the projected/transformed
spaces. It seems that the sparsity of vectors
in the original matrix plays a role in finding
the optimal value for s. If PoP-constructed
models are used directly (together with τb)
for computing similarities, then we propose
0.002 < s. If PoP-constructed models are
subject to an additional weighting process for
stabilizing vector distributions into Gaussian-
like distributions such as PPMI, we propose
using only 1 or 2 non-zero elements.

Last but not least, we confirm that by
carefully selecting context elements (i.e., re-
moving stop words and using lower and up-
per bound frequency cut-offs for context se-
lection) and fine tuning PoP+PPMI+Pearson
(i.e., increasing the dimension of models and
scaling PMI weights as in Levy et al. (2015))
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Figure 6: The proportion of non-orthogonal
pairs of index vectors (P 6⊥) obtained in a simu-
lation for various dimensionality and number
of non-zero elements. The left figure shows
the changes of P 6⊥ for a fixed number of index
vectors n = 104 when the number of non-zero
elements increases. The right figure shows
P 6⊥ when the number of non-zero elements is
fixed to 8 but the number of index vectors n
increases. As shown, P 6⊥ is determined by the
number of non-zero elements and the dimen-
sionality of index vectors and independently
of n.

we achieve an even higher score in the MEN
test (i.e., an average of 0.78 with the max
of 0.787). Moreover, although improvements
from applying SVD truncation are negligible,
we can employ it for reducing the dimension-
ality of PoP vectors (e.g., from 6000 to 200).

4 Conclusion

We introduced a new technique called PoP
for the incremental construction of semantic
spaces. PoP can be seen as a dimensional-
ity reduction method, which is based on a
newly devised random projection matrix that
contains only positive integer values. The
major benefit of PoP is that it transfers vec-
tors onto spaces of lower dimensionality with-
out changing their distribution to a Gaussian
shape with zero expectation. The obtained
transformed spaces using PoP can, therefore,
be manipulated similarly to the original high-
dimensional spaces, only much faster and
consequently requiring a considerably lower
amount of computational resources.

PPMI weighting can be easily applied to
PoP-constructed models. In our experiments,
we observe that PoP+PPMI+Pearson can be
used to build models that achieve a high per-



formance in semantic relatedness tests. More
concretely, for index vector dimensions m ≥
3000, PoP+PPMI+Pearson achieves an aver-
age score of 0.75 in the MEN relatedness test,
which is comparable to many neural embed-
ding techniques (e.g., see scores reported in
Chen and de Melo (2015) and Tsvetkov et al.
(2015)). However, in contrast to these ap-
proaches, PoP+PPMI+Pearson achieves this
competitive performance without the need
for time-consuming training of neural nets.
Moreover, the processes involved are all done
on vectors of low dimensionality. Hence,
the PoP method can dramatically enhance the
performance in tasks involving distributional
analysis of natural language.
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