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RÉSUMÉ
Dans cet article nous proposons une nouvelle méthode pour le calcul de word embeddings en utilisant
des projections aléatoires. Notre approche est telle que des méthodes de pondération comme positive
pointwise mutual information (PPMI) peuvent être appliquées après la construction de notre modèle
véctoriel, i.e., après avoir déjà réduit la dimensionalité. Les word embeddings peuvent alors être
tranferés d’une manière efficace et avec une performance de calcul supérieure vers des espaces
sémantiquement discriminants. De plus, l’approche se distingue par une mise-à-jour facilitée de
l’espace vectoriel et une interopérabilité augmentée. Nous évaluons notre méthode par rapport à
plusieurs tâches sémantiques. Nous montrons qu’elle donne des résultats comparables à ceux des
meilleures méthodes appliquées à des corpus monolingues.

ABSTRACT
Non-Negative Randomized Word Embedding

We propose a word embedding method which is based on a novel random projection technique. We
show that weighting methods such as positive pointwise mutual information (PPMI) can be applied to
our models after their construction and at a reduced dimensionality. Hence, the proposed technique
can efficiently transfer words onto semantically discriminative spaces while demonstrating high
computational performance, besides benefits such as ease of update and a simple mechanism for
interoperability. We report the performance of our method on several tasks and show that it yields
competitive results compared to neural embedding methods in monolingual corpus-based setups.

MOTS-CLÉS : Word Embedding, Projection Aléatoire.

KEYWORDS: Word Embedding, Word Vectors, Random Projections, Lexical Semantics.

1 Introduction

Word embedding techniques have become a cornerstone of several modern NLP systems. From a
methodological perspective, two broad categories of embedding algorithms are commonly identified
and used. Following the terminology proposed in Baroni et al. (2014), these are A) the classic
count models, which employ the chain of processes of collecting co-occurrence frequencies in high-
dimensional vectors followed by weighting and dimensionality reduction processes (see Turney &
Pantel, 2010) ; and, B) the more recent neural predictive techniques in which the process of learning
word embeddings is modelled as a (type of convex) optimisation task, and implemented using a kind
of neural network—e.g., Mikolov et al. (2013b), Pennington et al. (2014), and so on. Evidently, both
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methods capture statistical information about word usage and can be explained using vector space
mathematics (Levy & Goldberg, 2014).

In this paper, we ask which features an ideal vector-based representation of word meaning should
have. We maintain that an ideal model must A) show human-like behaviour on linguistic tasks of
interest ; B) have low dimensionality for ‘easy’ manipulation ; C) be efficiently acquirable from large
corpora to allow for fast experimentation ; D) be linked to a transparent model, so that linguistic and
computational hypotheses and experimental results can be systematically analysed and explained ;
and E) be easy to update (e.g., allow the addition of new context elements or target entities and the
removal of old ones, as required in the analysis of frequently-updated text data, such as text streams
from social media).

Despite their successes, both count and predictive models fall short of some of these desiderata. Due
to the heavy-tailed distribution of words’ co-occurrences (e.g., Figure 1a), count-based models often
fail on A and B, unless they embrace weighting and dimensionality reduction processes. Weighting
and dimensionality reduction processes, however, are carried out over high-dimensional vectors and
thus impose high computational complexity (C). In addition, once count-based models are weighted
and compressed, they are fixed and cannot be updated without running those expensive steps anew
(E). Even with these provisions, in some tasks, the performance of these models lags behind that of
predictive models (A), unless a variety of parameters is added to the basic model (Levy et al., 2015),
in which case the model becomes more difficult to interpret (D).

On the other hand, despite their competitive performance (A), neural-predictive models are relatively
slow and resource-intensive to train and involve a time-consuming parameter-tuning process (C).
Further, neural embeddings are difficult to interpret (D) : there have been a number of publications
dedicated to understanding these methods and/or questioning their lack of interpretability, e.g., (Fyshe
et al., 2015; Li et al., 2015). Simply put, we do not know exactly what sort of information the
dimensions of these models convey. Even worse, this lack of interpretability results in the lack of
interoperability : There is no guarantee that the comparison of embeddings obtained from different
runs of these methods or/and on different corpora will be meaningful. 1

To find a middle ground solution for the above-mentioned problem, we introduce a new technique for
generating low-dimensional embeddings using non-negative random projections. The construction
of models using our method does not require training but simply generating random vectors and
adding these random vectors together. In contrast to previous random-projection-based methods, our
proposed embeddings can undergo weighting transformations such as PPMI after their construction.
We argue that this model retains the main strengths of both count and predictive models, while
smoothing out some of their respective disadvantages. In § 2, we set the problem and propose our
solution in § 3. In § 4, we examine parameters of our method and report its performance on several
tasks. We conclude in § 5.

2 Problem Statement

We regard the problem of producing word embeddings as an operation over raw word-context
co-occurrences. To derive an embedding matrix P, a co-occurrence matrix C undergoes a set of

1. This is also true for count models compressed using a matrix factorisation technique.
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FIGURE 1: A histogram of the distribution of frequencies of weights built from 1+1 context-windows
for the lemma ‘abandon’ in the UKWaC corpus : long-tailed distribution in count models and a
standard asymptotic Gaussian in RI.

transformations T :
Cp×n ×Tn×x = Pp×x. (1)

The given process in Equation 1 maps p vectors of dimensionality n to an x-dimensional space P
(often, but not necessarily, x 6= n and x� n). T can be a composition of several transformations,
e.g., a weighting process W followed by a dimensionality reduction R, i.e., Tn×x = Wn×n×Rn×x.
The two broad categories of embedding techniques mentioned in § 1 differ in the way that they
compute and implement T.

In the so-called count models, T is often the combination of PPMI weighting (for increasing the dis-
criminatory power of models) and singular value decomposition (SVD) truncation (for dimensionality
reduction). The PPMI weight for a component cxy ∈ C is (Church & Hanks, 1990; Turney, 2001;
Bouma, 2009) :

ppmi(cxy) = max(0, log
cxy ×

∑p
i=1

∑n
j=1 cij∑p

i=1 ciy ×
∑n

j=1 cxj
). (2)

SVD truncation involves solving a least squares problem : computing `2 distances between column
vectors. Evidently, weighting process and SVD truncation of a large and high-dimensional model is
cumbersome and time consuming, and they restrain future updates of the model.

In predictive models, T is computed using neural embedding techniques. Simply put, T is derived by
solving an optimization problem defined by the objective function of the neural net. Although neural
networks can excel in task such as finding a (near-)optimum T and thus P, their usage (similar to
PPMI+SVD) can be computationally expensive and their training is time-consuming. Moreover, using
these methods involves an often complex parameter tuning process, which entails lengthy experiments.
The Word2Vec system (Mikolov et al., 2013b), for instance, involves selecting training parameters
of ‘negative samples’, ‘learning rate’, ‘subsampling rate’, and ‘smoothing factor’, in addition to the
dimensionality of the embeddings and the size of context window. It is difficult to understand which
particular combination of these parameters gives the best performance for a given corpus and task.

Apart from the methods mentioned above, T can be computed using a random projection techniques.
In the context of this paper, perhaps the most well-known example of this class of algorithms is
random indexing (RI) (Kanerva et al., 2000). In RI, T is a randomly generated matrix that is very
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sparse and has an asymptotic standard Gaussian distribution. As a result, in randomized methods such
as RI, devising T and thus deriving P can be faster and easier than count and predictive methods.
Particularly, since T is determined independently of C, in methods such as RI, P can be built
incrementally and be updated and used at any time. Furthermore, interoperability can be achieved by
sharing and using similar random projection matrices across tasks and corpora.

Unfortunately, RI and previous random projection-based techniques suffer from low discriminatory
power. Literally, RI is a distance-preserving randomized dimension reduction technique : the `2
distances between entities in a P constructed using RI are (approximately) the same as the `2
distances between entities in C. Consequently, although the RI method can be much faster and
simpler than other embedding techniques, because crude `2 distances in C are not sufficient in many
tasks, RI lags behind count-based PPMI-weighted and neural embeddings. Note that for RI, the sums
of components of row and column vectors in P are also always zero (given the standard Gaussian
distribution of the projections). Hence, RI embeddings cannot be weighted after their construction
due to the problem of division by zero (e.g., PPMI weighting is not applicable to RI embeddings since
the inner summations in Equation 2 are always zero—see Figure 1b). Likewise, note that the use of RI
and distance-preserving random projections is limited to the α-normed space that they are designed
for (e.g., α = 2 for RI). Hence, these methods cannot be applied after using all types of weightings.

In this paper, we propose a method that shows all flexibilities of random projection-based techniques
while it displays state-of-the-art performance in semantic similarity assessment tasks. Like RI, we
propose a T that is generated randomly. However, unlike RI, the sums of row and column vectors in
our embeddings are always greater than zero. In contrast to RI and count-based models, weighting of
our embeddings can take place after their construction. Since vectors resulting from our approach
are small (i.e., with a dimensionality of a few hundreds), weighting (e.g., PPMI) can be applied
to our models incredibly faster than in classical count-based models. Since our method devises T
independently of C and skips solving optimization tasks, it is much faster than predictive neural
techniques. For similar reasons, models can be built incrementally and updated at any time. Our
model is interpretable in the sense that the information each dimension of the model conveys can be
elucidated using T : Each dimension of our model corresponds to a bag of words. By the same token,
interoperability can be achieved by the simple mechanism of sharing random projection matrices. In
the following, we detail our method.

3 The Proposed Embedding Technique

3.1 Construction of Embeddings

In our method, the transformation (i.e., T in Equation 1) consists of a projection matrix R which is
followed by, recommended but not necessary, a weighting process W, i.e., T = R×W. Rn×m (for
m� n, e.g., m = 500) is simply a sparse randomly generated matrix. The elements rij of R have
the following distribution :

rij =

{
0 with probability 1− s
1 with probability s

, (3)

in which s is an extremely small number such that each row vector of R has, at least, one element
that is not zero (i.e.,

∑m
i=1 rji > 0 for each row vector ~rj ∈ R). Note that the coordinates of nonzero

elements are independently and identically distributed (i.i.d.). Given Equations 1 and 3, and using
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the distributive property of multiplication over addition in matrices, a desired space at a reduced
dimensionality m can be built using the familiar two-step procedure of incremental semantic space
construction :

Step 1. Each context element is mapped onto an m-dimensional index vector ~r. ~r is randomly
generated such that most elements in ~r are 0 and only a few are positive integers.

Step 2. Each target entity/word that is embedded in the model is represented by an m-dimensional
target vector ~v. All the elements of ~v are initially set to 0. For each encountered co-occurrence of this
target entity with a context element in an input corpus, ~v is updated by adding the index vector ~r of
the context element to it (i.e., ~v = ~v + ~r).

This process builds a model directly at the reduced dimensionality m. The first step corresponds to
the construction of the randomly generated projection matrix R : Each index vector is a row of R.
The second step is an implementation of the matrix multiplication in Equation 1 : Each target vector
is an unweighted row of P, which is computed in an iterative process. Once these embeddings are
obtained, they can undergo a weighting process such PPMI, however, at the reduced dimensionality
m instead of n.

3.2 Similarity Measurement and Weighting

Once a model is constructed, if desirable without applying any additional weighting process, similari-
ties between entities are computed using an appropriate measure of correlation coefficient between
vectors. The choice of a measure of correlation can be intuitively motivated by examining the role that
cosine plays for computing similarities between vectors that are derived from a standard Gaussian
random projection. In these models, despite the common interpretation of the cosine similarity as the
angle between two projected vectors, cosine can be seen as the product-moment Pearson’s correlation
between vectors due to the fact that R and thus the obtained projected spaces have E = (0). For two
vectors ~x and ~y of the same dimension n, Pearson’s correlation r is given by :

r(~x, ~y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (4)

in which x̄ = 1
n

∑n
i=1 xi. Because in these projected spaces x̄ and ȳ are always 0, Equation (4) can be

simplified to
∑n

i=1 xiyi√∑n
i=1 x2

i

√∑n
i=1 y2

i

, which is the same as the cosine definition. Given this explanation,

we propose that in Gaussian random projections, cosine gives similarities with respect to the linear
correlation between vectors.

To compute similarities between unweighted embeddings obtained from our method, we propose
Goodman and Kruskal’s γ coefficient (Goodman & Kruskal, 1954) (without ruling out the use of
measures of distributional similarities such as Pearson’s r, coefficient of determination r2 and so on).
Goodman and Kruskal’s γ belongs to a family of nonparametric correlation coefficient measures that
are known to be more resilient to the presence of outliers and noise, and when dealing with data of
non-Gaussian nature (Chen & Popovich, 2002). Since our embedding technique results in models that
have non-Gaussian long-tailed distribution, in which some of the coordinates can be uninformative,
we expect γ to be a more reliable measure of similarity between vectors than, for instance, Pearson’s
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r (as confirmed in our experiments). We emphasise that any correlation measure can be regarded for
quantifying a degree of relationship between two embeddings.

To compute γ, we define the notions of concordant and discordant pairs. Given any pairs such as
(xi, yi) and (xj , yj) from two m-dimensional vectors ~x and ~y and the value v = (xi − xj)(yi − yj),
these two pairs are concordant if v > 0 and discordant if v < 0. If v = 0, the pair is neither concordant
nor discordant. Let p and q be the number of concordant and discordant pairs in embeddings ~x and ~y,
respectively. Goodman and Kruskal’s γ is given by γ = p−q

p+q (Ibid., p. 86.).

As with count models, in our embeddings a weighting process is recommended to eliminate uninfor-
mative or irrelevant collected co-occurrence frequencies, and to boost the impact of informative and
discriminatory ones. Depending on the task in hand, a range of weighting processes can be applied to
our embeddings. Particularly, we suggest using ‘dimension-wise estimates of association strength’,
i.e., a method of normalising raw coordinate values (i.e., the collected frequencies) by the expected
and marginal frequencies, e.g., odds ratio, relative risk, and so on, and certainly, PPMI (definitions
of these methods are listed in (Evert, 2004, chap. 3, p. 84)). Besides the commonly known function
of weighting techniques (distilling statistical information that really matters), applying the above
mentioned weighting transformations results in embeddings in which the values of coordinates have a
rectified left-truncated Gaussian distribution with a mean much greater than zero.

From a statistical perspective, many weighting processes (and their involved sub-processes such as the
log transformation in the definition of PPMI) can be seen as an attempt to stabilize variance of vector
coordinates and therefore to make the observations more similar/fit to Gaussian distribution (a practice
with long history in many research, particularly in biological and psychological sciences). Hence, for
computing similarities between weighted embeddings, we anticipate that using a correlation measure
such as Pearson’s r yields a better result than using γ (as confirmed, to a degree, in our experiments). 2

Overall, we emphasise the importance of considering the bilateral relationship in choosing similarity
measure and weighting technique.

Weighting transformations can be composed and applied one after each other to our embeddings.
For instance, we observe that an iterative application of PPMI weightings to our embeddings results
in a more accurate identification of syntactic regularities/relationships between words, e.g., in tasks
such as clustering words by their part-of-speech tags and finding grammatical analogies proposed by
(Mikolov et al., 2013a). As stated earlier, since we are dealing with low-dimensional vectors, such
compositions can be computed fast and with a low memory footprint. Note that weighting can be
done on demand : To accelerate this process, the sum of all the column vectors, which is as small as
one m-dimensional vector, can be kept in memory at all time.

4 Empirical Investigations

4.1 Method’s Parameters

To use our method, three basic parameters must be set : 1) the way co-occurrences are collected
(i.e., the configuration of context window), which is common to any word embedding technique, 2)

2. Note that since the left-truncated Gaussian distributions in our models have a mean much greater than zero, we expect
that the truncated tails have a small effect on computed correlations. Also, the length of truncation can be tuned by choosing a
value other than zero such as used in (Levy et al., 2015).

114



Context Window Size (a+a)
Method 2+2 3+3 5+5 7+7 9+9 11+11
OM-raw+γ 0.733 0.704 0.643 0.607 0.581 0.566
OM-PPMI+r 0.845 0.835 0.797 0.775 0.75 0.737
RI 0.648 0.629 0.602 0.617 0.583 0.573
Count-raw 0.650 0.638 0.600 0.625 0.600 0.588
Count-PPMI 0.750 0.738 0.662 0.638 0.612 0.600
W2V-CBOW 0.838 0.825 0.825 0.813 0.775 0.763

TABLE 1: The TOEFL Test : Various Context Size.

the dimensionality of embeddings, and 3) the number of positive integer elements in index vectors.
To provide a picture of our method’s behaviour with respect to these parameters, we report its
performance under various settings.

To do so, we begin our empirical investigations with two well-known tasks : (a) the TOEFL synonymy
test (Landauer & Dumais, 1997) and (b) the MEN test collection, i.e., a similarity and relatedness
test (Bruni et al., 2014). The TOEFL test is a multiple choice task in which, given a target word
and four candidate lexical items, the correct synonym for the target must be selected. The test
contains 80 questions and results are normally reported in terms of accuracy (i.e., the proportion
of questions answered correctly). The MEN test is a collection of 3000 word pairs, associated
with similarity/relatedness ratings obtained from human annotators. Evaluation takes the form of
a calculating correlation (i.e., Spearman’s rank correlation ρ) between the human-induced scores
and the scores assigned to word pairs by the system. Note that our aim is to compare our method’s
performance with other embedding techniques and not to obtain the highest achievable performance
for these tasks. As for instance, (Bullinaria & Levy, 2012) report that with a careful collection of
co-occurrences, PPMI-weighted count model can achieve the highest score for the TOEFL test.

For the experiments in this subsection, we collect co-occurrences from the tokenised preprocessed
UKWaC corpus (Baroni et al., 2009). However, we do not use any additional information or processes
(i.e., no frequency cut-off for context selection, no syntactic information, no part-of-speech tags, etc.).
Reports in this section can be compared with those from Baroni et al. (2014), Lapesa & Evert (2014),
Tsvetkov et al. (2015), and Schnabel et al. (2015).

We introduce four baselines, namely, A) a raw count model in which similarities are computed using
cosine ; B) the RI method+cosine ; C) high-dimensional PPMI-weighted vectors+cosine ; and D)
Word2Vec continuous bag-of-word (cbow) embeddings+cosine. To obtain Word2Vec embeddings,
parameters are set to values that have shown the best performance in experiments ran by (Baroni
et al., 2014) : dimension 400, 10 negative samples, and 1e-5 for subsampling.

4.1.1 Baselines and Context Window Size

Thorough examination of context window parameters, due to space limitations, goes beyond the
scope of this paper. We therefore limit ourselves to context windows of various size that extend
symmetrically at both sides of target words. In these experiments, for RI and our method (from now
on OM), we report results averaged from 10 independent runs of the algorithms with index vectors
of dimensionality 1500. For our method, index vectors contain 4 non-zero elements generated as
described by Equation 3. For RI, index vectors have 4 non-zero elements (two +1 and two -1).

Tables 1 and 2 summarize the results obtained for the TOEFL and MEN tests, respectively. Besides
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Context Window Size (a+a)
Method 2+2 3+3 5+5 7+7 9+9 11+11
OM-raw+γ 0.543 0.541 0.546 0.545 0.545 0.545
OM-PPMI+r 0.712 0.731 0.745 0.745 0.751 0.744
RI 0.331 0.361 0.393 0.422 0.443 0.461
Count-raw 0.326 0.356 0.391 0.419 0.440 0.457
Count-PPMI 0.731 0.748 0.749 0.749 0.750 0.751
W2V-CBOW 0.769 0.757 0.773 0.767 0.769 0.773

TABLE 2: The MEN Test : Various Context Size.

the results for the baselines, we show performance of OM where A) the unweighted vectors are
directly used together with the γ for similarity calculation (OM-raw+γ), and B) vectors are PPMI
weighted before using Pearson’s r for similarity measurement (OM-PPMI+r). For the TOEFL test,
OM-PPMI+r shows comparable performance to Word2Vec vectors. Clearly, PPMI weighting of
embeddings enhances the performance and OM-PPMI+r outperforms baselines other than Word2Vec
by a large margin ; this is true even for OM-raw-γ (i.e., without PPMI weighting). Note that in these
experiments, the average performance enhances if we increase the dimensionality of vectors.

The effect of PPMI-weighting on our embeddings is clearer on the MEN test. OM-PPMI+r constantly
outperforms OM-raw+γ. Again, OM-PPMI+r performs at the same level as PPMI-weighted count
vectors and Word2Vec. Further, OM (with inclusion of the PPMI weighting) performs this task almost
twice as fast as Word2Vec and using a smaller amount of memory. 3

These results also support our earlier claim that RI preserves `2 distances between vectors. As
anticipated, RI shows a performance similar to the raw count vectors. While RI fails in delivering
a high performance in these tests, it is important to note that RI, however, attains its goal as a
dimensionality reduction method, i.e., `2 distance preservation. When the dimensionality of RI
models increases and the number of non-zero elements set to about 0.001, the results from RI are
almost identical to unweighted count vectors, almost in all runs of the algorithm.

4.1.2 The Method’s Parameters, its Random Behaviour, and Performance

OM is a randomized method and its performance is influenced by some parameters, namely, the
distribution of words in the input corpus (which all models are dependent on) and the random
projection matrix configuration—i.e., the hyper-parameters of dimensionality of vectors, and the
number of non-zero elements (i.e., m and s in Equation (3)). In any application for a random method
such as OM, as explained by (Stein, 2007), the effect of these hyper-parameters must be explained
and decided with respect to the amount of ‘information loss’ that can be tolerated. In distance-
preserving methods, the objective is clear : to have least errors (with highest probability) in the
estimated distances between projected points ; that is, information loss is interpreted by the amount of
distortions in projected distances. Given this interpretation, the hyper-parameters are then explained
and set, both in theory and practice—e.g., see (Dasgupta & Gupta, 2003).

When it comes to word embedding methods, however, we are not interested in the sheer distance-
preservation ability of methods. Instead, we are aiming for building semantically/linguistically

3. For the UKWaC and the words it contains, context window of size 5+5, learning embeddings using OM took 37 minutes
while it took 71 minutes for Word2Vec. Note that in these experiments, Word2Vec was run as a 10-threaded process while OM
was run as a single threaded process. Both methods are implemented and tested on the the Java platform. Source codes are
available as part of supplement material.
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FIGURE 2: Changes in OM+PPMI+r’s performance when the dimensionality of models increases
and s is the fixed value 0.001. The average performance is shown by the marked line. The margins
show the minimum and maximum performance observed in 10 independent executions.
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FIGURE 3: Changes in OM+PPMI+r’s performance when the dimensionality of models is fixed to
m = 3000 but s (i.e., the number of positive integers in index vectors) increases.

discriminative models, which is also the case for OM. Taking this into consideration, because we
do not have a clear definition of ‘information loss’ for OM, we are not able to provide theoretical
accounts for its behaviour and the role of its hyper-parameters with respect to the ‘information loss’.
In return, we rely on some empirical results. Consequently, we study OM’s behaviour by reporting its
performance on the TOEFL and MEN tests under various parameter settings. To keep reports in a
manageable size, we focus on OM-PPMI+r configuration and use a context window of size 2+2.

Figure 2 shows the method’s performance when the dimensionality m increases while the number
of non-zero elements remains at the same ratio of s = 0.001. For each m, 1000 ≤ m ≤ 6000,
the models are built 10 times and the average as well as the maximum and the minimum observed
performances in these experiments are reported. From this experiment, we observe that OM follows
a similar behavioural pattern to other random projection techniques in the sense that increasing the
dimensionality enhances the performance and reduces the variance of task-based performances (and
their probabilities). Namely, for the TOEFL and MEN tests, increasing the dimensionality boosts the
average performance as well as the worst and the best obtained performances. Evidently, an increase
in the average performance entails a low probability for bad performance and a high probability for
good performance.

To study the effect of the number of non-zero elements in index vectors, we repeat the above
experiments while fixing the dimensionality of vectors to m = 3000 and changing s to different
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Similarity Tests
Vector Set YP130 RW MTURK287 MTURK771 MC30 MEN WS353 RG65 TOEFL WS-SIM WS-REL SimLex999

W2C-B 0.50 0.32 0.66 0.71 0.81 0.79 0.63 0.83 0.91 0.75 0.53 0.46
OM-O 0.51 0.42 0.60 0.62 0.76 0.73 0.69 0.74 0.88 0.74 0.64 0.37
OM-R 0.69 0.39 0.69 0.67 0.79 0.74 0.72 0.77 0.95 0.78 0.64 0.49
OM-E 0.69 0.36 0.65 0.65 0.81 0.72 0.67 0.81 0.95 0.77 0.56 0.50

TABLE 3: Extended Evaluation

values. Figure 3 shows the obtained results. As s increases, i.e., s ≥ 0.001, the performance of
the method starts to decrease. While achieving best results using a small s is good news (since a
small s yields better computational and memory complexity), we are not able to clearly pinpoint
the cause. We verified these observations across tasks other than TOEFL and MEN and we found
a similar pattern. Based on our experiments, we propose index vectors of only one positive integer
value, particularly when embeddings are induced from huge corpora and they are weighted prior to
similarity measurement (i.e., the most likely scenario in which this method is used).

For practical reasons, this is, indeed, good news. Since index vectors that contain only one non-
zero element (which have the fixed value of +1) are sufficient, and because in most applications
dimensionality won’t exceed a couple of thousands, index vectors can be represented and reside in
memory using only one byte of data (for storing the dimension that carries the non-zero value). In
addition, the computational complexity of OM does not depend on the model’s dimensionality ; 4 it is
a function of s (besides the size of corpus). Consequently, OM shows not only a better task-based
performance but also a much lower computational and space complexity. Note furthermore that OM
offers a solution that avoids float arithmetic operations during the construction of models.

4.2 Extending Relatedness Evaluations

To provide a better picture of OM’s task-based performances, we extend our evaluations to relatedness
tests other than MEN. This includes WS353 (Finkelstein et al., 2001), WS-SIM and WS-REL by
(Agirre et al., 2009), the classic tests of MC30 (Miller & Charles, 1991) and RG65 (Rubenstein
& Goodenough, 1965), the Stanford Rare Word dataset ( RW) (Luong et al., 2013), MTurk287 by
(Radinsky et al., 2011), MTurk771 (Halawi et al., 2012), the more recent SimLex999 (Hill et al.,
2015), and YP130 verb relatedness (Yang & Powers, 2006). (Faruqui & Dyer, 2014) provides tools
for easy evaluation of these data-sets (as well as a number of baselines). In all the above-mentioned
tests, the figure of merit (i.e., Spearman’s correlation ρ) is computed similarly to the MEN test. To
provide a baseline, we took the off-the-shelf Word2Vec embeddings provided by (Baroni et al., 2014).
These embeddings are learnt from the set of ukWaC, WaCkypedia (Baroni et al., 2009), and the
British National Corpus (BNC) corpus. After thorough parameter tuning, (Baroni et al., 2014) report
that these vectors showed the best performance in their evaluations (denoted by W2C-B). We perform
our experiments by applying OM to the same corpora, using the same context window size 5+5, in
order to obtain embeddings for the same set of 300,000 words provided by (Baroni et al., 2014).
For OM, we use index vectors with one non-zero element and set the dimension to 777 (denoted by
OM-O). Table 3 summarizes the obtained results.

4. In contrast to neural embedding techniques.
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4.3 Boosting Performances

Is it possible to improve the performance reported in § 4.2 ? The answer is certainly yes, through
several means. Evidently, like many embedding techniques, OM can be adapted to each task, e.g., by
choosing an appropriate context window size, and in general, by making linguistically more informed
decisions. The performance for the YP130 verb relatedness test is for instance boosted by filtering
context elements through dependency parses (we achieved ρ = 0.71). In addition, as shown in § 4.1,
increasing the dimensionality of models boosts performance.

Apart from these, OM allows for heterogeneous context types : For example, in addition to context
words, one may also use word character-grams to capture the morphosyntactic structure of context
words (we observed slight improvement across tasks), or even go further and use bags-of-visuals (i.e.
to say, there is no limitation on defining and using various types of contexts at once). In comparison,
this is not that straightforward with neural embedding techniques : often the objective function (which
defines the underlying optimization task) must be modified and adapted for the new context types.
For instance, we might improve WS-REL performance by incorporating information about word
co-occurrences in documents : We assigned each document di in our input corpora to an index
vector ~rdi . In addition to index vectors of context words, we added ~rdi to target vectors of words
that co-occurred in the same document di. Subsequently, WS-REL performance increased from 0.64
(using only context words) to 0.69.

Applying guidelines provided by (Levy et al., 2015) is another avenue for improving the results. We
witnessed that using different weighting methods (including scaled and shifted PPMI) and correlation
measures for similarity assessments for different tasks can also enhance performances. For example,
using the set of OM-O vectors (Table 3) and scaled PPMI weighting and different similarity measures
(noted in parentheses), the performance for YP130 increases to 0.54 (r), MC30 to 0.84 (r2), MEN
to 0.75 (r), RG65 to 0.79 (γ), and SimLex999 to 0.41 (r). Nevertheless, we leave the systematic
evaluation of these methods of performance boosting for future.

Besides the classic methods suggested above, two interesting methodologies have emerged recently :
retrofitting, i.e., refining word embeddings using lexical relations available in lexical resources
(Faruqui et al., 2015) ; and, meta-embedding, i.e., ensembling several sets of embeddings (Yin &
Schütze, 2016). OM can easily be adapted for retrofitting and meta-embedding. For instance, we
implement a notion of retrofitting by simply adding the index vector of a word to the vectors of all
other words that co-occur with it within a lexical entry (e.g. checking for co-occurrence across all
WordNet synsets). We update OM-O vectors using this mechanism and with the lexical resources used
in experiments by (Faruqui et al., 2015), i.e., WordNet (Miller, 1995), FrameNet (Baker et al., 1998),
and PPDB (Ganitkevitch et al., 2013). The result is a considerable improvement in performances
(see OM-R in Table 3). We also observe a noticeable boost in results by adapting a simplified
meta-embedding approach (see OM-E in Table 3). Using the same set of index vectors, we build
several models using context windows of different sizes (namely, 2+2 to 10+10). Given a word in our
vocabulary, its meta-embedding is obtained by adding vectors that represent this word in each model.

5 Conclusion

We proposed an embedding method based on positive-only random projections. Each dimension of
our model represent a randomly chosen bag-of-words (or any other types of context). Compared to
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count and neural-predictive techniques, our method provides a simpler mechanism for building and
updating distributional models. Thanks to its underlying randomized projection, our method is fast and
has low computational complexity. Particularly, by allowing weighting at the reduced dimensionality,
our method achieves a performance comparable to many recent embedding techniques. However,
in contrast to these approaches, our method is more flexible, it can accommodate several types of
contexts at once, it can be updated at any time, and it does not require time-consuming training and
parameter tuning.

Acknowledgments

This work was supported by the CRC 991 “The Structure of Representations in Language, Cognition,
and Science” funded by the German Research Foundation (DFG). We would like to thank the
anonymous reviewers for their helpful comments.

Références

AGIRRE E., ALFONSECA E., HALL K., KRAVALOVA J., PAŞCA M. & SOROA A. (2009). A study
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