
Video Retrieval Using Natural Language:

From Parse Tree to Database

Behrang Qasemizadeh, Ian O’Neill, Philip Hanna, Darryl Stewart

ECIT, The Institute of Electronics, Communications and Information Technology,

Queen’s University Belfast, Northern Ireland Science Park, Queen’s Road, Queen’s Island,

Belfast, BT3 9DT, Northern Ireland.
{i.oneill,p.hanna,dw.stewart}@qub.ac.uk, b.qasemizadeh@ecit.qub.ac.uk

Abstract

In this paper we focus on the process of matching parsed

natural language input with tagged video content in a

database. The work is being undertaken as part of a new

spoken dialogue system, ISIS-NL, a subcomponent of the

EPSRC-funded ISIS project (EP/E028640/1), which aims to

further safety on public transport through use of a multimodal

sensor network. Here we describe the manner in which

natural language input to a video retrieval system is parsed

using dependency trees, and the way in which the parse is

refined to accommodate increasing levels of detail, until

finally it can be matched with corresponding database content

that can be presented as a viewable video sequence.

Index Terms: natural language dialogue, natural language

understanding

1. Introduction

One of the objectives of the EPSRC-funded ISIS project

(EP/E028640/1) is to enable supervisors in a network

operations centre (NOC) to retrieve, by spoken enquiries,

video information that has been captured and tagged by an

intelligent sensor network. Processing of spoken enquiries

falls to the natural language subcomponent of the ISIS

project, ISIS-NL. Such a network, while operating primarily

in the visual domain as a CCTV system, may also have the

ability to capture environmental information in the acoustic

and radio frequency domains. This information, describing

the appearance of people and things, their interactions with

each other and the environment, is likely in the longer term, to

mirror the subtlety of a human observer’s description of a

scene or incident, and go beyond this in some modalities.

Accordingly we have adopted a highly flexible approach

to the parsing of queries, and the storage of information and

its retrieval. At the heart of this approach is an attempt to

capture the semantic relationships between events and the

actors that are involved in them, and between events or actors

and the attributes or properties that describe them. The

generation of dependency trees that represent such

relationships characterizes the parsing process, and serves as a

means of incorporating into the interpretative process a

typical human appreciation of syntax and semantics: who or

what typically performs a particular action; how is that action

performed; to whom or to what is that action typically done.

(In the discussion that follows we distinguish, in cases where

ambiguity might arise, between ‘logical objects’, in the sense

of object-oriented types, and ‘grammatical objects’, which

suffer the action of some event.)

Similarly, the design of the normalized database in which

tagged information is held – though it will not be the focus of

this paper – also accommodates the many potential

interrelationships and interactions between people, things,

and their observed attributes (details which, incidentally, may

rapidly and arbitrarily change during a recording period, not

least because of the imperfections of automated recognition

technologies.)

The process of mapping a parse tree to video clips

consists of two major steps: firstly, identifying the parse

pattern, and secondly locating and retrieving information

related to an identified parse tree. The following sections

describe these basic processes in greater detail, placing

particular emphasis on the parsing process itself.

2. Identifying the parse pattern

Figure 1. The process of mapping parse tree to video

clips. The process comprises two steps: ‘Identify the

Pattern of Parse’, and ‘Locate and Retrieve

Information’. If the process is faced with an unknown

parse pattern, it may generate a basic response, or ask

the dialogue manager to become involved.

In ISIS-NL, the semantic parse of a natural language utterance

is represented as a tree comprising a head and two other sub-

trees: a left-hand tree and right-hand tree. The left and right

sub-trees appear either in the form of a list (representing, for

example, multiple subjects of an action or multiple properties

of an entity) or in the form of another tree, again with a head

and two other sub-trees. To map an utterance directly on to

the underlying data scheme, a parse tree needs to be in one of

the following forms:

• SVO Pattern: SVO refers to the utterances with the

familiar subject + verb + object grammatical structure,

e.g. “A young man in a red jacket got out of a yellow

vehicle.” Here, if we consider “got out of” as the verb (a

prepositional verb interpreted as a transitive one), then the

subject phrase is ‘a young man in a red jacket’, and the

object is the ‘yellow vehicle’.

• SVE Pattern: The SVE pattern refers to utterances in the

form of a subject (agent) + verb + event details

(adverbials), e.g. “A girl in a reddish hood walked

somewhere”. Here ‘somewhere’ is interpreted as a

location adverbial that modifies the ‘walking event’

performed by the girl. It is often possible to interpret an

SVO Pattern in terms of an SVE pattern and vice versa.

Different ontological definitions of events results in

different semantic parse rules that have to be considered,

and different ways of representing an event in the data

model. Study of [1] and [2] suggests such flexibility.

• POP Pattern: The POP pattern refers to utterances like

“a young girl in a reddish hood”: property + logical object

+ property. Here the head of parse tree is the entity ‘girl’,

who is ‘young’ and she is ‘in a reddish hood’. In the

parse tree for this example both ‘young’ and ‘in a reddish

hood’ are dependant on the ‘girl’ who is the head of the

parse tree (In reality ‘girl’ would be normalized to the

canonical form of the database – young, female person –

and the object type ‘person’ would be further situated

within an object hierarchy.)

3. Locating and retrieving information

relevant to an identified parse tree

ISIS-NL uses the relationship between parsed entities – their

semantic roles – for information retrieval. Thus, each of the

parse patterns described previously introduces its own

sequence of processes (sometimes variations on a common set

of steps) that locate and retrieve information. Such a

sequence of processes is known as a recipe. Figure 1 shows,

from left to right, the recipes for the SVO, SVE, and POP

Patterns. As can be seen from Figure 2, shared steps include

memory initialization, locating information through a ‘check

parse’ process, refining facts, and finally producing a video

compilation. The recipe for each parse pattern can be

represented by an XML entity, also called a recipe, each of

whose steps has an equivalent predicate in Prolog, our main

implementation language. A ‘task specific discourse memory’

evolves in parallel to the retrieval task: discourse memory

contains facts that are the outcome of each step of a recipe. At

the end of the retrieval task, discourse memory contains facts

that are answers to an input query.

The main processes involved in each step of an

information retrieval recipe are described in the following

sections.

3.1.1. Init memory

The predicate init_memory initializes discourse memory,

preparing it to hold information relevant to the final answer.

Such information usually consists of pointers to facts about

objects and events that are available through the data

repository. The predicate init_memory is closely tied to the

system’s overall dialogue strategy, especially insofar as it

concerns ‘task-specific dialogue’ and ‘task-specific discourse

memory’ in a broader, potentially multi-domain dialogue

system. For different real-world tasks, different sets of task-

related values have to be initialized. However, often generic

tactics (for deciding when to reset values, or for confirming

new or changed values, etc.) will be employed by the dialogue

manager (DM), as it initialises and subsequently manages the

evolution and confirmation of facts supplied by the user, even

if these are in a task-specific context.

3.1.2. Check parse

The check_parse predicate identifies information in the parse

tree, and provides a list of events and objects as candidate

answers. Candidate events and objects are chosen on the basis

of the class of object and the type of event requested in the

input query. The procedure may also consider the position of

an event type or an object class in an ‘event ontology’ or an

‘object ontology’ respectively.

Figure 3 represents the flowchart for check_parse and its

subgoals. Predicates check_non_root, check_root, and

check_object_sub_tree respectively assert into memory all

relevant event details and their semantic roles, all possible

subjects or objects of events and their relevant properties, and

all properties relevant to an object. For example, for an input

query like “Did someone get out of a car?”, check_parse finds

that event ‘get out of’ is the most granular information that

can appear as the root of the parse tree. It then finds and

Init memory

Check parse

Map

properties

values

Refine facts

by subject

property

Refine facts

by object

property

Video

Compilation

Init memory

Check parse

Map

properties

values

Refine facts

by subject

property

Refine facts

by event

details

Video

Compilation

Init memory

Check parse

Map

properties

values

Refine facts

by object

property

Video

Compilation

D
is

co
u

rs
e

 M
e

m
o

ry

R
e

ci
p

e
s

SVO

Parse Tree

POP

Parse Tree

SVE

Parse Tree

Video Clip Video Clip Video Clip
(XML

documents)

(XML

documents)

Figure 2. Architecture for locate and retrieve procedure

asserts in a data repository all the relevant events that are of

type of ‘get out of’. As for the next step, check_parse begins

to look for the left and right sub-trees that it normally

associates with an event such as ‘get out of’ and, using its

parse rules (Figure 4), finds that a ‘get out of” event needs a

subject of class ‘person’ and a grammatical object of class

‘container’. Using the information in the database,

check_parse identifies logical objects that satisfy these

criteria, and by asserting new Prolog facts in memory,

identifies the objects and their semantic roles as possible

answers. If the user’s input contains properties, as

descriptions of objects or as event details, check_parse, using

ontology-based rules relating to events or objects, first

ensures that the properties mentioned are compatible with the

object class or event type, and then asserts the properties and

their roles into memory, as candidate answers.

If the information in the input parse tree conflicts with a

‘parse rule’ (for example, a parse for ‘get out of’ may require

that a person exits a location, rather than the other way

round!), the system suspends further processing of the parse

tree and generates a message to inform the broader dialogue

system of the illogical combination of information.

Depending on the particular implementation, a ‘confirmation

agent’ may then intervene to solve the conflict. The system

also asserts user-provided facts (obtained by the system’s

parse rules from the input parse tree) in its ‘discourse

memory’, so that the broader dialogue system can deal with

over-specified and under-specified queries and, in the latter

case, ask the user to provide additional information as

necessary.

3.1.3. Map property values

The predicate map_property_values maps the natural

language description of a property to a list of equivalent,

‘canonical’ values that are used in the data repository. For

example, ‘black’ as a description for the colour property may

be mapped on to (0,0,0) as its RGB value. In the current

implementation, mapping is fairly simple, and involves two

steps: creating an atomic representation of the input property

from the list containing the natural language description, and

checking the atom against the vocabulary contained in the

relevant property ontology. If the mapping procedure fails,

then a fact to this effect is asserted into the discourse memory,

to give the broader system a means of knowing about and

responding to the problem.

3.1.4. Refine facts

The predicate refine_facts checks whether appropriate

properties are associated with objects or events at particular

times. The objects and events, which have previously been

parsed and extracted from the user’s utterance, are checked

against properties so that appropriate object-property or

event-property combinations may be identified as existing in

the system’s database. Corresponding to the entities that are

capable of possessing properties, and that appear in the three

varieties of parse trees, four variants of refine_facts have been

implemented. In reality the number of refine_facts variants

depends on the number of semantic roles supported by the

system. In the current implementation, depending on the

variant, refine_facts will look for database matches using

• the properties of the subject of an event;

• the properties of the object of an event;

• the properties of an object;

• the details of an event.

For example, in a query like “Did someone in a grey coat

get out of a red car”, ‘grey coat’ and ‘red’ are treated as

Start

check parse (SVO, SVE)

Find event

type

Assert all events with

mentioned event type as

possible answer

Find event

rule

Type of left

 sub‐tree

Type of right

sub‐tree

Check non‐

root sub‐

tree

Check root

sub‐tree

List

Root

Check non‐

root sub‐

tree

Check root

sub‐tree

List

Root

End

Figure 3. The check_parse procedure. The flowchart on the left shows check_parse for SVO and SVE

parse patterns. The flowchart to the right illustrates the process for the POP parse pattern.

properties that describe the grammatical subject and object of

a ‘get out of” event. Let us assume that in the check_parse

process we have already asserted persons p1, p2, p3 and p4 as

possible subjects – because they are of the class person – of

the event ‘get out of”. Similarly let us assume that vehicle v1,

which is of class container in our system, is the only possible

object of the event ‘get out of’. The predicate refine_facts

will assert all the time instances that p1, p2, p3 and p4 hold

the property ‘grey coat’, and all the time instances that v1

holds property ‘red’ – again, we take this rather cautious, and

logical, approach, since an automated vision system may in

fact assign differing and sometimes conflicting properties to

the same object at different sampling times. In this example

we may find that only p3 has ‘grey coat’ as one of its

properties and that ‘red’ is indeed a property for the object v1.

As the result of the refine_facts procedure, previously

asserted candidate answers that do not pass the refinement

criteria are omitted from the list of candidate answers. After

refine_facts, the discourse memory contains only facts that

pass the relevant ‘refinement’ tests, and these facts are now

augmented with temporal tags to assist retrieval and to inform

the user when the candidate event or events occurred.

3.1.5. Video compilation

Having ensured, through the refine_facts procedure, that its

candidate answers meet the criteria stipulated in the input

query, the system now uses the predicate video_compilation

and the temporal pointers that accompany the candidate

answers to collect the key frames in the video repository that

satisfy the user’s request. Thresholds can be set on the

number of frames collated, to ensure that the system presents

a video sequence long enough to demonstrate the occurrence

requested but not so long as to overburden the user. For

events, a minimum of two key frames are used to show the

time interval in which the event occurred. For objects, video

is an assemblage of sets of time instants (with a minimum of

one time instant per object). Thresholds can of course be

adjusted to meet user requirements. The output of the

video_compilation process is an XML file that represents

video clips in the form of URLs for key frames. A simple

animator front-end plays these back to the user in the form of

a movie.

4. Conclusions

The end-to-end process described here concentrates on just

one aspect of the dialogue process, namely the ability to

match key content of a user’s utterance with key content in

the system’s data repository. Of course, a fully developed

dialogue system must do much more than this: it must ensure

that the key contents of a user’s utterance is properly

understood; that changes and enhancements to the user’s

request are noted; that reasonable alternatives are presented to

the user when a specific request cannot be fulfilled; and so on.

We hope to address these matters in the coming months in the

context of the ISIS project, drawing on our previous

experience of developing the Queen’s Communicator [4]

dialogue system. For the moment, though, we believe we

have devised a useful approach to handling the uncertainties

that arise from ‘hard-to-recognise’ and ‘hard-to-interpret’

visual information. Our approach accommodates and deals

with possibly erroneous classifications by an intelligent vision

system, and makes use of human-level knowledge, embodied

in grammatically- and semantically-based parse rules, to help

impose reasonable interpretations both on a user request and

the on the information that might be used to satisfy it.

5. References

[1] Smith, J. O. and Abel, J. S., "Bark and ERB Bilinear Trans-

forms", IEEE Trans. Speech and Audio Proc., 7(6):697-708,

1999.

[2] Soquet, A., Saerens, M. and Jospa, P., “Acoustic-articulatory

inversion”, in T. Kohonen [Ed], Artificial Neural Networks,

371-376, Elsevier, 1991.

[3] Stone, H.S., “On the uniqueness of the convolution theorem for

the Fourier transform”, NEC Labs. Amer. Princeton, NJ.

Online: http://citeseer.ist.psu.edu/176038.html, accessed on 19

Mar 2008.

[4] O’Neill, I., Hanna, P., Liu, X. and McTear, M., “The Queen’s

Communicator: An Object-Oriented Dialogue Manager”, Proc.

EUROSPEECH-2003, Geneva, pp. 593-596, 2003.

<event_rules type="get_out_of">
 <left expect="root"

 cat="ObjectPhrase" type="person"/>
 </left>
 <right expect="root">
 <cat=" ObjectPhrase" type="container"
 </right>

</event_rules>

<object_rule object_class="person">
 location
 gender
 height
 upper_garment

 headwear
 lower_garment
 hair
 time_tag
 age

</object_rule>

Figure 4. Parse Rules. On the left is an example of a parse rule for a ‘get out of’event (an event_rule). It shows that

this event can have a logical object of type ‘person’ as the grammatical subject of the event, and a logical object of type

‘container’ as the grammatical object. The subject appears in the left-hand sub-tree and the object in the right-hand one.

The parse rule (object_rule) on the right of the figure tells us that a logical object of type person may have a list of

dependant properties comprising age, location, gender, and so on. A container would have a list of properties too.

