
Development of a Java-based Unified and Flexible Natural

Language Discourse System

 Philip Hanna Ian O’Neill Darryl Stewart Behrang Qasemizadeh

The Institute of Electronics, Communications and Information Technology
Queen’s University Belfast

Belfast, BT71NN, UK
{ p.hanna, i.oneill, dw.stewart, b.qasemizadeh }@qub.ac.uk

ABSTRACT

This paper outlines the design and development of a Java-based,

unified and flexible natural language dialogue system that enables

users to interact using natural language, e.g. speech. A number of

software development issues are considered with the aim of

designing an architecture that enables different discourse

components to be readily and flexibly combined in a manner that

permits information to be easily shared. Use of XML schemas

assists this component interaction. The paper describes how a

range of Java language features were employed to support the

development of the architecture, providing an illustration of how a

modern programming language makes tractable the development

of a complex dialogue system.

Categories and Subject Descriptors

I.2.7 [Artificial Intelligence]: Natural Language Processing—

Discourse, Speech recognition and synthesis; D.2.11 [Software

Architectures]: Domain-specific architectures

General Terms

Design; Human Factors

Keywords

Human Computer Interaction; Spoken Dialogue Systems;

Dialogue Management

1. INTRODUCTION
The construction of advanced natural language dialogue systems

that offer a more natural form of human-computer interaction

represents a key strand of research into intelligent user interfaces.

Figure 1 illustrates the cyclic operation of a typical natural

language dialogue system. Input is received aurally from the user

and transformed into a corresponding word sequence using a

speech recogniser (SR) before then being semantically

„understood‟ within a natural language parser (NLU). The

semantic parse is fed into a dialogue manager (DM) that integrates

the semantic parse within some defined task. The dialogue

manager outputs an appropriate semantic reply which is then

transformed into natural language using a generator (NLG) and

finally synthesised (SS) as audio or displayed within some form of

GUI. Depending upon the supported input modalities, the NLU

component may also receive text that has been typed by the user.

An overview of key research issues in this area can be found in

[1].

Whilst advanced natural language dialogue systems offer the

possibility of profound change with regard to how we use a

multitude of different devices, such as mobile phones, or interact

within environments such as living spaces, cars, etc., the

construction of state of the art dialogue systems must tackle a

number of significant development issues [2].

In particular, developers must often deal with a heterogeneous

software environment consisting of a mixture of different software

components, some of which will be knowledge-based with

autonomous reasoning capabilities, developed using different

languages and potentially running across a number of distributed

platforms. Within this environment there is a need to ensure that

components can be customised and new functionality integrated.

The system must also be accessible to the different types of

developer (speech technologist, linguist, dialogue modeller, etc.)

and provide adequate monitoring and reporting capabilities.

Most current research towards creating an architecture for a

natural language dialogue system has centred on developing a

flexible framework that can be used to link together discourse

components [3]-[6]. Typically such architectures provide a

defined pipeline through which input is evolved, passing from one

component to the next, towards an output. This provides loose

component coupling, and hence flexibility and ease of integration.

Figure 1. Common components within an NL dialogue system

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, to republish, to post on servers

or to redistribute to lists, requires prior specific permission and/or a fee.

PPPJ '09, August 27-28, 2009, Calgary, Alberta, Canada.

Copyright 2009 ACM 978-1-60558-598-7 ...$10.00.

21

A challenge inherent in this architecture concerns how

information can be shared between components. Whilst it is

possible to regard the output from one component as the input to

the next, effective operation is often dependent upon other

components. For example, how a recognised word sequence

should be semantically interpreted may depend upon the nature of

the last question asked by the system or the acoustic word

confidences within the speech recogniser. As such, dialogue

effectiveness and performance can be improved if the minimal set

of information passed between components as inputs and outputs

is augmented with a wider pool of shared information.

This paper provides selected details of the development of one

such approach, developed using Java, which retains the benefits of

loose component coupling whilst enabling each component to

easily query and understand the operation of other components.

The architecture has been named QuADS (Queen‟s Advanced

Dialogue System). The paper shows how the language features

and libraries of Java were employed to make possible an efficient,

flexible and robust implementation of the proposed architecture.

The paper is structured as follows: Section 2 provides a brief

summary of existing relevant research; Section 3 explores

development issues concerning a unified and shared discourse

model; Section 4 outlines the integration of the model into a

flexible, agent-based architecture; Section 5 explores a number of

other development areas in which Java‟s capabilities were usefully

employed; Section 6 offers a number of conclusions.

2. CURRENT ARCHITECTURES
A number of notable dialogue architectures have been developed

with a view to improving the flexibility, extensibility and

reusability of natural language dialogue systems.

Examples of systems that define an architecture into which

established dialogue components can be easily integrated include

Olympus [3], derived from the CMU Communicator project [4],

which provides a pipeline capturing the logical flow of

information within the system and enables components to

communicate through a centralised message-passing

infrastructure. Another example is TRINDIKIT [5] which offers

developers a set of interconnected tools for building information

state dialogues. Other approaches adopted by researchers include

the development of dialogue architectures motivated towards ease

of prototyping or development. For example, the Dialogue

Prototyping Equipment & Resources (DIPPER) system [6] offers

a number of interfaces to established natural language dialogue

components, thereby permitting rapid prototyping.

Of particular relevance to this paper is the JASPIS [7] architecture

which utilises an agent-manager-evaluator model of interaction. A

central manager holds a shared information store and is connected

to other managers through a star-based topology. As such,

components are effectively stateless, with the discourse state held

centrally. The information store makes use of blackboards and

databases as a means of holding information. The precise

information structure is domain dependent and consequently is

defined and constructed for each developed application.

Finally, a platform that has benefitted from wide commercial

uptake alongside offering a vehicle for dialogue research is

VoiceXML [8] which defines the W3C standard for interactive

voice dialogues between a user and system. However, VoiceXML

does not readily permit certain forms of flexible dialogue to be

modelled.

3. DEVELOPMENT OF A UNIFIED AND

SHARED DISCOURSE MODEL

3.1 Goal of a unified and shared model
Information flow within a spoken dialogue system can be largely

modelled as transformational (i.e. SR→NLU→DM→NLG→SS).

Each process is typically dependent upon the established

discourse context and recent discourse history. For example, both

speech recognition and natural language understanding can be

improved if the system‟s last response is used to predict what the

user might say next. However, whilst there are clear advantages in

sharing information, the standalone nature of most components

within a typical dialogue system means that information flow is

mostly one-way, with limited information sharing.

One of the key goals of the QuADS architecture was to construct

a single discourse model that could be shared between all

dialogue components, as well as providing a number of

complete/partial views into the discourse product that components

may employ in order to share and access information.

3.2 Developing a unified discourse model
In order to develop a unified discourse model that could be

shared, the inputs and outputs of each component were defined,

alongside the key internal data structures typically maintained by

each component. All identified data was decomposed until

expressed as structured primitive data. Following this, the various

data structures were fused together into a single model. An

overview of the developed unified discourse model can be seen in

Figure 2.

The identified discourse elements are as follows:

 Item: An Item element encapsulates some quantum of

information within the dialogue system (e.g. holding details

of a train journey, a recognised word sequence, or an

objective or target to be realised). As such, items provide the

fundamental modelling element by which the goals,

processes, procedures and knowledge associated with a

discourse task can be modelled within the system.

 State: This element encapsulates one or more Item elements

into a single collection, thereby modelling the collective state

of some form of interaction or process.

 Act: An Act element encapsulates any action that operates

upon Item elements. As such, acts may introduce, modify or

remove items. The actions embodied within an Act element

may be inter-object or intra-object.

 Step: This element provides a means of encapsulating one or

more Act elements into a larger, more meaningful, quantum

of defined interaction.

 Product: This element encapsulates the total evolution of the

discourse between the user and system. A product can be

defined as consisting of a series of State elements,

representing the state of the dialogue at discrete points in

time, alongside a corresponding series of Step elements

representing the user and system generated actions from

which the discourse is evolved. A combined state and

associated set of actions is known as a turn.

22

Act

-

Item «uses»

Step

-acts : [0..n] Act

State

-items : [0..n] Item

Turn

-state : State

-steps : [0..n] Step

Product

-turns : [0..n] Turn

-views : [0..n] Collection<Item>

0..1

0..1

1

0..1

1..*

1..*

0..1

1..*

0..1

1..*

-qualities : [0..n] Quality

-values : [0..n] Value

-links : [0..n] Link

-reasons : [0..n] Reason

Element

-qualityIdentifer : String

Quality
-valueIdentifer : String

-value : <<valueIdentifer>>

-type : <<valueType>>

Value

-linkIdentifier : String

-link : <<linkIdentifier>

Link

-reasonIdentifier : String

-reason : <<reasonIdentifier>>

Reason

Property

Item

-

ActState Step

0..*

1

0..* 0..* 0..*

 Figure 2. Core class relationships within the developed

discourse model

In order to promote model flexibility and extensibility, Item, Act,

State and Step instances are considered to be refinements of a

more fundamental Element type. Each element (and hence each

act, item, etc.) is defined as consisting of four different property

type bundles, namely:

 Qualities: A quality expresses a particular feature or

characteristic that is assumed to be inherent to the element

(i.e. providing a richer definition of the element type).

 Values: A value holds a quantity or value associated with the

element. It differs from a quality in that value changes do not

change the nature, or conceptual type, of the element.

 Links: A link provides a means of connecting two elements

together in some defined manner.

 Reasons: A reason records a justification for the existence of

the given element. It provides a means of engaging in meta-

discourse reasoning about items, acts, etc.

The structure outlined above provides a flexible discourse model

that can be potentially shared across different discourse

components. The manner in which the product is shared is

outlined in Section 3.3.

3.2.1 Use of Java in developing a unified model
The creation of the model outlined in Figure 2 relied heavily upon

the use of Java‟s object-oriented capabilities through the

construction of classes and the inheritance/encapsulation of

behaviour. Additionally, the formation and manipulation of

element qualities, values, links and reasons extensively employed

Java‟s generic collections. The key software engineering issue that

was encountered concerned how discourse elements could be best

represented and managed.

A discourse element is similar to a software object in that it can

encapsulate a number of properties and define forms of behaviour.

Additionally, discourse elements can be refined into more

specialised types of element. For example, a discourse element

representing the notion of agreement can be refined into separate

Agree and Disagree acts. However, discourse elements must

model the conventions and usage assumptions adopted within

person-to-person conversations. This introduces a number of

challenges with regard to the way in which discourse elements are

evolved and linked to other elements, as explored next.

3.2.1.1 Element Identification
Discourse elements will typically evolve and change over time. In

addition, the types of link between elements may also be

dependent upon the evolution of the elements, i.e. in some cases

linkage will be temporally dependent and in other cases

independent. For example, a hotel RoomBooking discourse item

will likely evolve over the duration of a conversation as details of

the booking, such as arrival date, etc., are provided. A discourse

act to Confirm the properties of the RoomBooking item will refer

to the state of the item at a defined instance in time. If, at some

later point in the dialogue, it becomes necessary to query what has

been confirmed with the user, the RoomBooking state at the point

of confirmation must be queried. In contrast, a HolidayBooking

item which links to the RoomBooking item will likely wish to

refer to the most current state of the room booking.

In order to realise the above structure within Java, each element

was assigned two identifiers: a numeric uniqueElementID,

which uniquely identifies a particular type of element at a

particular instance in time, and a string identifier which

uniquely identifies an element but includes all instances of that

element as evolved over time.

3.2.1.2 Element Evolution
The discourse product is evolved on a turn-by-turn basis as

information is received from either the user or discourse

components that add to, modify, or negate existing information.

23

As noted, previous discourse turns are stored as part of a

discourse history, thereby permitting the evolving nature of the

dialogue to be modelled and queried. In order to evolve the

discourse product the most recent turn n is initially cloned and

then evolved using input and processes occurring during turn n+1

to form the completed turn.

The evolution process provides an example of a tension,

frequently encountered during the design of the dialogue system,

concerning how a base set of behaviour might be developed that

would offer the type of functionality needed by most dialogue

developers whilst permitting customised behaviour to be easily

introduced. In particular, the evolve process should take into

account how discourse elements „age‟ over successive turns. For

example, an Offer act may become less relevant if, over time, it

remains unaddressed by the user. In order to provide flexibility,

the reflection capabilities of Java were employed within the

Element class to provide a generic inheritable approach that

enables extending classes to be flexibly cloned and evolved, i.e.:

public Element clone() {

 try {

 // Create new refined element type

 Constructor elementConstructor =

 this.getClass().getConstructor(

 Class.forName("java.lang.String"));

 Element clone =

 (Element)elementConstructor.newInstance(

 this.getIdentifier());

 // Copy common element bundles

 clone.clonePropertiesFrom(this);

 } [[Catch block omitted]]

 return clone;

}

The clonePropertiesFrom method was structured to provide a

default cloning process with suitable attachment points whereby

properties can be evolved in a customised manner if desired.

protected void clonePropertiesFrom(Element target)

{

 // Evolve all defined values

 for(String valueId : target.values.keySet()) {

 // Retrieve and add the value type

 String valueType =

 target.valueTypes.get(valueId);

 valueTypes.put(valueId, valueType);

 // Retrieve the value object

 Object value = target.values.get(valueId);

 try {

 // Value specific turn evolve

 Object evolvedValue =

 valueEvolve(valueType, value);

 // Ensure namespace update

 addValue(

 valueId, valueType, evolvedValue);

 } [[Catch block omitted]]

 }

 [[Similar code for evolving qualities, etc.

 omitted]]

}

3.2.1.3 Element Reference
As noted in section 3.2.1.1, every discourse element is assigned a

unique identifying name that is persistent over the evolution of the

dialogue. The turn-by-turn evolution of discourse elements entails

that components must be provided with a straightforward means

of mapping a particular element identifier onto the most recent

evolution of that particular element.

In addition, element identifiers are also used by discourse

components to access information maintained by other

components. For example, if a natural language component

wishes to access the most recent dialogue act output by a dialogue

manager component, then, it is reasonable to assume that the NL

component can understand the types of act output from the DM.

However, it is not reasonable to assume that the NL component

will have an extensive understanding of the internal structure

within the DM. As such, it is desirable that components can refer

to named discourse elements without requiring precise knowledge

of where that element is located.

The indirect mapping from identifier name to Element instance

was made possible through the construction of namespaces

combined with a number of resolve (or mapping) algorithms.

Each Element instance maintains a namespace of all contained

elements (e.g. the namespace for a State contains all named

items stored within that state, whilst the namespace for an Act

contains all the named values, links, etc. contained within that

act). Retrieval of a named element is accomplished using one of a

number of defined resolve methods. Each resolve method

embodies a particular search strategy that attempts to map

provided identifiers onto an appropriate Element instance or

named element quality, value, link or reason. Consider:

public Element resolveElementId(

 Element context, String elementId) {

 Element element = null;

 do {

 // Extract fragment from element descriptor

 String fragmentId = [[Code omitted]]

 // Product resolve

 if(assembly.getProducts()

 .containsKey(fragmentId)) {

 element = assembly.getProducts()

 .get(fragmentId).getCurrentTurnState();

 // Link resolve

 else if(context.hasLink(fragmentId)) {

 element = resolveElementIdWithinProduct(

 context, context.getLinks(fragmentId));

 context = element;

 }

 // Registry resolve

 else {

 element=resolveElementIdWithinRegistries(

 context, fragmentId);

 context = element;

 }

 // Repeat whilst more fragments remain

 } while([[More fragments remain]])

 return element;

}

24

For example, a request of resolveElementId(null,

"HotelBooking.ArrivalPeriod.Date") might result in

„HotelBooking‟ being mapped onto an HotelBooking item

within the current discourse product (assumed default context)

with „ArrivalPeriod‟ next mapped onto a correspondingly named

linked item within the Hotelbooking item, before finally

mapping “Date” onto a Date value within the linked

ArrivalPeriod item.

The use of namespaces and the resolve process entails that a

dialogue component need not be concerned with the underlying

structure of the discourse product, nor the organisation and

evolution of elements managed by other components. It does,

however, assume that discourse elements share a common set of

descriptive labels across discourse components, thereby enabling

one component to search for an element of interest that is

managed by another component.

3.3 Developing a shared discourse model
In order to be useable, each component needed a means of

viewing, modifying and extending the discourse product using

conceptual constructs and notions appropriate to that component.

For example, whilst both speech recognition and natural language

generation components can share the same dialogue product, each

component will view and change the dialogue product in terms of

the acts and items that make „sense‟ to that component.

In order to permit components to impose different views upon the

unified discourse model, a number of high-level, component-

specific views of the basic underlying discourse model were

defined. The high-level views were realised by introducing classes

that extend the base Act and Item classes and that are further

defined within a number of XML schemas. In particular, each

XML schema provides details of how the basic underlying

structure can be mapped to a component-specific interpretation.

For example, the Item element is a core object within the unified

model and is defined in terms of property bundles of qualities,

values, links and reasons. Discourse components dealing with

natural language can make use of a Word element, which is

defined as a refinement of the Item element. In particular, it is

defined to hold a „Manner‟ element quality (holding any

recognised prosodic information) alongside „Word‟ and

„Confidence‟ element values (holding the word string and

associated recognition confidence). As such, the Word element is

a type of Item with pre-defined qualities, values, etc.

A total of four base schemas were defined. At the lowest level, a

CoreSchema provides a schema-based definition of the proposed

unified discourse model. The core schema is extended by two

schemas, namely an input/output schema (IOSchema) and a

problem-solving schema (PSSchema). The IOSchema provides

the basic input/output interface between the different IO

modalities that surround the system and the principle recognition

and generation managers. The IOSchema refines the core schema,

making available items such as a WordSequence, WordLattice,

ImageURI, etc. and acts such as TypedInputAct,

SpokenOutputAct, etc.

In turn, the PSSchema defines the core semantic constructions

that inputs are mapped onto and outputs are generated from. The

problem-solving schema is derived from that detailed by Blaylock

[9] as a means of modelling and evolving discourse problems. In

particular, an Item is refined to encompass an Objective (things

to accomplish), a Recipe (planned sequences of action) and a

Resource (utilised items) alongside corresponding acts.

The final developed base schema, namely the discourse

management schema (DMSchema), refines the PSSchema to

introduce the discourse specific acts that underpin most current

models of dialogue. The schema was, in part, derived from the

DIT dialogue act hierarchy developed by Bunt [10]. Figure 3

provides a snapshot of top-level acts defined within the hierarchy,

Figure 3. Top level discourse acts and a selection of

refined acts defined within the DMSchema

.

DialogueActAct

CommissiveAct

DirectiveAct

InformationSeekingAct

InformationProvidingAct

DialogueControlAct

Offer DeclineAccept

Request Suggest Instruct

Check Specify

Confirmation AgreementInform Agree

Disagree

FeedbackAct TurnManagementAct ContactManagementActDialogueStructureAct OwnCommunicationActSocialObligationAct

25

alongside some of the more refined discourse acts. In brief:

commissive acts deal with the commission of action such as

offering and agreeing to some plan of action; directive acts deal

with the direction of action, such as suggesting a certain form of

action; information-seeking and -providing acts deal with the

identification and supply of information in response to directives.

Finally, dialogue control acts help manage the often uncertain,

turn-by-turn, changing nature of the dialogue.

Importantly, any two components which „understand‟ a particular

defined schema can interact with one another using the acts and

items defined within that schema. In effect, each schema provides

an interpretational window onto the underlying unified discourse

model. Hence, different discourse components can readily access

and query the workings of other components, including

selectively using a defined schema to retrieve certain key items of

information. For example, a natural language understanding

component implementing the IOSchema can query the acoustic

and word likelihoods assigned to a recognised input, as stored by

a speech recogniser, or, through implementing the DMSchema,

query the dialogue acts output from the dialogue manager. This is

in contrast to a traditional dialogue management system where

each component typically has little or no access to other

components other than through normal IO progression.

3.3.1 Use of Java in developing a shared model
Java‟s extensive XML support offered a means of parsing input

XML and generated output XML in agreement with the defined

schemas. The core problem encountered in realising the shared

model concerned how best to enable dialogue developers to easily

and straightforwardly extend the provided schemas to include

refined items, acts, etc. In particular, the provided functionality

should enable dialogue developers to easily construct and

deconstruct refined Element instances from/to a corresponding

XML description. Additionally, conformity checking should be

embedded to ensure that both extending schemas and XML input

conform to the requirements of the defined base schemas.

Through the use of Java‟s Validator and Schema instances it

was readily possible to verify that the source XML met the

specification defined within the relevant schema, thereby

significantly reducing the amount of code that was needed to

validate the process of construction and deconstruction.

The introduction of straightforward element-to-XML construction

and deconstruction relied upon the design of the Element class.

In particular, all classes extending Element are required to be

defined using the quality, value, link and reason property bundles

which are inherited from the base Element class. This

dependency meant that it was possible for the Element class to

offer the following two methods as a generic means of handling

the process of construction and deconstruction.

public static Element buildFromXML(

 Node sourceNode) throws AMDSException

public abstract org.w3c.dom.Element buildAsXML(

 Document document) throws AMDSException

Provided discourse elements are defined in terms of the property

bundles defined within the Element class, then the inherited

XML functionality will enable refined Element instances to be

correctly constructed and deconstructed. However, in order to

ensure that objects constructed from an XML description are

correctly instanced (i.e. an XML description of a SomeItem

should be realised as an instance of SomeItem) it was necessary

to ensure that the Element XML methods were structured to

make use of Java‟s reflection capabilities, e.g.:

public void addValue(

 Node sourceNode, Element targetElement)

{

 try {

 // Extract added object id and type

 NamedNodeMap attributes =

 sourceNode.getAttributes();

 String id = attributes.

 getNamedItem("id").getNodeValue();

 String type = attributes.

 getNamedItem("type").getNodeValue();

 // Build and add object

 Object value = buildObject(type, attributes.

 getNamedItem("value").getNodeValue());

 targetElement.addValue(id, type, value);

 } [[Catch block omitted]]

}

public Object buildObject(

 String className, String constructorParameter)

{

 Object targetObject = null;

 try {

 // Build requested object using parameter

 Class targetClass = Class.forName(className);

 Constructor targetClassConstructor =

 targetClass.getConstructor(

 Class.forName("java.lang.String"));

 targetObject =

 targetClassConstructor.newInstance(

 constructorParameter);

 } [[Catch block omitted]]

 return targetObject;

}

4. EXTENSIBLE AND CONFIGURABLE

ARCHITECTURE
As noted in Section 1, one of the objectives within spoken

dialogue system research is to develop models of discourse that

can be easily and flexibly adapted to different problem domains.

In order to accomplish this, it is necessary to develop a system

that encapsulates and shares domain-independent discourse

behaviour whilst permitting domain-specific behaviour to be

easily integrated. For example, asking for a check-in date to a

hotel is domain-specific behaviour, whilst a confirmation strategy

to verify newly supplied information would likely be shared

across all domains.

Whilst the discourse model outlined in Section 2 provides a

flexible and extensible basis from which to drive discourse

behaviour across a number of different components, it is neither

prescriptive nor suggestive with regard to the form of architectural

design to use when building discourse components. As a baseline,

it was assumed that a component architecture [11] would be used

to modularise the different stages within the dialogue system. A

component in this sense can encompass a simple process offering

services to other components through to embodying complex

processes which are responsible for driving key tasks within the

dialogue. It was further assumed that information flow can be

modelled as a transformational pipeline at the highest level

between key components.

26

In order to develop a suitable architectural view across discourse

components the often unpredictable and adaptive nature of

dialogue was taken into consideration. In particular, the

developed architecture would need to permit developers to easily

customise existing functionality and also introduce new

behaviour. It was decided to model discourse components using a

partially managed multi-agent approach [12], whereby decisions

are determined through agent interaction as supervised and

directed by a manager. Figure 4 provides an overview of the

developed architecture, where:

 The discourse product provides a single, shared, evolving

record of dialogue progression, holding the current discourse

state alongside previous states.

 A manager has responsibility for directing the evolution of

some aspect of the dialogue task, e.g. natural language

output, dialogue strategy selection, etc. One or more

managers will be responsible for updating the product.

 An agent contains task expertise on offer to managers and

used to determine how the dialogue product will evolve.

Underlying support for inter-agent communication is

performed in accordance with a subset of the defined FIPA

agent communication language (ACL) [13].

 A forum provides a central point of communication between

a manager and its associated agents. The forum provides a

manager component with a means of directing task evolution

enquiries towards one or more registered agents, as well as

providing a means of enabling multiple agents to put forward

an agreed response (i.e. supporting arbitration).

 A model is associated with a product and provides some

form of product-related assessment (i.e. holding meta-

information about the project). Models provide product

assessments that can be of use to agents in terms of better

informing their decision-making process.

 A registry holds common and reusable discourse elements

(e.g. Objectives, Recipes, Date items, etc.). In effect, each

library provides a set of reusable elements which can be

used, as needed, by dialogue developers.

Structured as such, domain-independent processes are defined

within managers, with „plug-and-play‟ agents used to define and

drive domain-specific behaviour in response to manager requests.

DMSchema
XML

Interpretation

Manager

Generation

Manager

Managers

Agent-
based
Expertise

Dialogue Manager

Task Manager

Output

Manager

Input

Manager

IOSchema
XML

Generation

Forum

Interpretation

Forum

Task

Forum

Discourse

Forum

Input

Forum

Output

Forum

Domain

Specific

Expertise

Domain

Specific

Expertise

Domain

Specific

Agents

Domain

Specific

Expertise

Domain

Specific

Expertise

Emotion

Aware

Agents

Domain

Specific

Expertise

Domain

Specific

Expertise

Discourse

Optimisation

Agents

Domain

Specific

Expertise

Domain

Specific

Expertise

Input/Output

Modality

Agents

Domain

Specific

Expertise

Domain

Specific

Expertise

Interpretative /

Generative

Agents

DMSchema
XML

IOSchema
XML

Unified Discourse Product

Products

User Proficiency

Model

I/O Utilization

Model

Discourse

Efficiency Model

Models
 User Affect

Model

Common Discourse

Element Registry

Registries

Task Element Registry

Dialogue Strategy

Registry

Output Template

Registry

Comm

Objective(s)

CommAct(s)

+ Emotional

Tags

Transitory DP

Updat

e

TDP

Update

Discourse

History/

Metrics

PS

Acts(s)

Deter

mine

Resp

onse

Elicitation Policy

Confirmation Policy

 Information Policy

Evolv

e

TDP

Forums

Analyse

PS

Product

Update

PS

Recipe

Evolve

 PS

Recipe

PS

Controller

PSSchema
XML

Figure 4. Overview of the developed multi-agent based

dialogue system incorporating the unified discourse product

.

27

4.1.1 Use of Java in developing an extensible and

configurable architecture
The developed architecture is intended to provide a framework

upon which both domain-dependent and domain-independent

natural language discourse behaviour can be readily incorporated

and executed. Java interfaces were deployed as a means of

defining the expected functionality of the manager, forum, agent,

model, product and registry components.

Default implementations of each component were created. For

example, the base agent class provides a default implementation

of methods defined within the Agent interface, written to support

the operation of the agent communication language (ACL). In

turn, the base manager class implements the corresponding

Manager interface to provide support for an input → integrate →

evolve → output sequence. The use of inheritance means that

domain-specific behaviour can be readily added on top of the

inherited functionality offered through the base classes.

In order to support a distributed deployment of managers and

agents, Java‟s object streams were used to enable inter-component

communication between Java-based components. In addition, an

extendable base agent was developed to support TCP-IP

communication between non-Java or non-integrated systems using

the defined XML schemas.

Combined together, the employed Java features enable new

expertise to be readily incorporated within the dialogue system

through the extension of one of the available base classes, with

extending classes needing to have little awareness of the overall

underlying communication structure employed within the system,

though they must support the relevant defined XML schema.

5. OTHER JAVA ASPECTS

5.1 Assertion testing and exception handling
In developing the unified model, consideration was given to how

other developers might extend the base classes through the

introduction of domain-specific extensions. In particular, it was

considered desirable that any usage assumptions associated with a

class should, if invalidated, be communicated to the developer.

This was felt to be important given the overall complexity of the

unified model and the need to ensure consistency of usage

between different developers. For example, the element resolve

process outlined in section 3.2.1.3 requires developers to adopt a

common set of descriptive labels across discourse components. In

order to provide the necessary safeguards, the base Element class

embeds extensive generic error-handling alongside a range of

sanity tests which ensure (to a certain degree) that usage

assumptions concerning elements are not invalidated. Any

invalided assumptions result in a generated report.

Error-checking and sanity tests were largely handled through the

use of assertions and exceptions. Assertion-checking was intended

to be of use to developers when building/modifying agents or

introducing/changing discourse behaviour. The assertions can be

disabled within a release build in order to reduce the cost of

expensive run-time error/usage checks. Other forms of error were

handled through the use of exceptions and a balanced

combination of local and global exception handlers. An example

of the error/sanity-checking can be seen below:

public void setValue(String id, Object value) {

 try {

 // Check for parameter errors

 assert values != null;

 assert id != null &&

 values.containsKey(id);

 [[Other invocation error checks omitted]]

 // Sanity test for a user named identifier

 assert !isGeneratedElementName(id);

 }

 catch(java.lang.AssertionError error) {

 if(isGeneratedElementName(id))

 Assembly.reportWarningMessage(

 "Element.setValue(): Adding element"

 + "with default (generated) name.");

 else

 Assembly.reportErrorMessage(

 "Element.setValue(): Invalid parameters"

 + [[Error message omitted]]

 error.printStackTrace();

 }

 // Add value (+consider namespace addition)

 considerAddValueToNameSpace(value);

 values.put(id, value);

}

5.2 Performance monitoring and threading
Execution performance is of vital importance within a spoken

dialogue system as the process of input recognition through to

output synthesis should, on average, take less than approximately

one second to complete. An average completion time of a couple

of seconds will likely be noticeable to the user and lessen the

acceptability and usability of the dialogue system.

Whilst some unmanaged languages, such as C++, provide

developers with the forms of low-level control needed to optimise

execution performance on a given target platform, the same

cannot be easily argued of managed languages. However, whilst

Java may not be suited to an application that must provide optimal

performance, the rich language and library features within Java

means that it offers the right language choice when developing

complex architectures that will be subject to various forms of

extension and refinement and which will need to run across a

distributed platform, interacting with different external processes

and data sources.

Two broad approaches were employed with a view to maximising

the performance of the developed system:

 Exploiting the nature of turn-based dialogue: Execution load

within a dialogue manager can be characterised by short

periods of intensive activity (when constructing the reply to

the user) interspersed by long periods of relative inactivity

(waiting for the user‟s next input). This pattern was exploited

within the design, whereby tasks such as cloning the last

discourse turn in preparation for the next input, logging

accumulated reports to disk, updating GUI elements, etc., are

only triggered once the reply has been sent to the user.

 Implementation approach: Whilst code clarity and safety

remained the most important implementation aspect, care

was taken to ensure that garbage collection churn was

minimised (e.g. autoboxing was avoided, discarded Element

instances were cached and reused at key points, etc.). This

limited the overall memory management cost.

28

To provide accurate timing, Java‟s System.nanoTime

function was used to permit accurate ms time measurement

for agent request times, IO costs, etc. The collected times

were used to provide overall timing statistics for use within

logging as well as offering a mechanism whereby maximum

agent response times can be imposed and monitored.

5.3 Logging and Reporting
Given the wide range of different agents, managers, models, etc.

involved within the dialogue system it is important that a

developer can view component interaction. Equally, it is

important that the dialogue models and strategies can be

monitored to measure their suitability and effectiveness. In order

to accomplish this, level-based logging (ranging from full-debug

logging to summary logging) was used within classes to report

inputs, processes and outputs. In order to permit more directed

investigation, each component (agent, manager, etc.) implemented

a reporting interface; whereby interested listeners (e.g. GUI

components, etc.) could be attached to the discourse component

and selectively receive reports from that component, e.g.:

if(Assembly.reportMessages)

 report(ReportType.Normal, 3, "PSManager ["

 + getIdentifier() + "] Objective release");

Where report is defined as:

protected void report(

 ReportType type, int level, String message)

{

 if(Assembly.reportLevel < level) return;

 if(reportingObject != null)

 reportingObject.reportMessage(message);

 switch(type) {

 case Normal :

 Assembly.reportMessage(message);

 break;

 case Warning :

 Assembly.reportWarningMessage(message);

 break;

 case Error :

 Assembly.reportErrorMessage(message);

 break;

 default:

 Assembly.reportErrorMessage(

 "Unknown report type ["+type+"]");

 }

}

Assembly.reportMessages is defined outside of report to

avoid needless report method calls when reporting is disabled.

6. CONCLUSIONS
This paper outlines the design of a unified discourse model which

can be shared and accessed across different discourse components

through the use of XML schemas. The paper also introduces a

flexible and extensible agent-based architecture within which to

structure and employ discourse expertise.

The development of the system was made possible through the

use and exploitation of features available within Java. In

particular, the paper illustrates how Java‟s object-oriented

capabilities, interfaces, XML support, object reflection and

distributed functionality can be employed to support the design

and development of the outlined architecture. Additionally, the

paper also indicates how Java language features such as

assertions, exception-handling, generics and collections were used

to ease the development process and produce robust software.

In conclusion, this paper provides an illustration of how the

development of a complex software artefact is made tractable

through the use of features and capabilities provided within the

Java programming language.

7. ACKNOWLEDGMENTS
This work is supported by the EPRSC under project number

EP/E028640/1 (ISIS).

8. REFERENCES
[1] McTear, M.F. 2004. Spoken Dialogue Technology: Towards

the Conversational User Interface. Springer. 1852336722

[2] Glass, J., 1999. Challenges for spoken dialogue systems.

Proc. IEEE Workshop on Automatic Speech Recognition and

Understanding (ASRU), Colorado, USA.

[3] Bohus, D., Raux, A., Harris, T., Eskenazi, M., Rudnicky, A.,

2007b. Olympus: an open-source framework for

conversational spoken language interface research, Proc.

Bridging the Gap: Academic and Industrial Research in

Dialog Technology Workshop, Rochester, NY.

[4] Rudnicky, A., Xu, W. 1999. An agenda-based dialog

management architecture for spoken language systems, Proc.

Workshop on Automatic Speech Recognition and

Understanding, (Keystone, Colorado).

[5] Larsson, S. and Traum, D. R. 2000. Information state and

dialogue management in the TRINDI dialogue move engine

toolkit. Natural Language Engineering, 6, 3-4 (Sep. 2000),

323-340.

[6] Bos, J. Klein, E. Lemon, O. and Oka, T. 2003. Dipper:

Description and formalisation of an information-state update

dialogue system architecture. 4th SIGdial Workshop on

Discourse and Dialogue, Sapporo.

[7] Turunen, M., Hakulinen, J., Räihä, K., Salonen, E.,

Kainulainen, A., and Prusi, P. 2005. An architecture and

applications for speech-based accessibility systems. IBM

Systems Journal 44, 3 (Aug. 2005), 485-504.

[8] http://www.voicexml.org/.

[9] Blaylock, N. Allen, J. 2005. A collaborative problem-solving

model of dialogue. Proc. 6th SIGdial Workshop on

Discourse and Dialogue, 200-211.

[10] Bunt, H. C., Girard,Y. M. 2005. Designing an Open,

Multidimensional Dialogue Act Taxonomy. Claire Gardent

and Bertrand Gaiffe (eds). Proc. of the ninth workshop on

the semantics and pragmatics of dialogue (SEMDIAL). 37-

44.

[11] Hopkins, J. 2000. Component primer. Communications of

the ACM 43, 10 (Oct. 2000), 27-30.

[12] Shoham, Y., Leyton-Brown, K. 2008. Multiagent Systems:

Algorithmic, Game Theoretic, and Logical Foundations.

Cambridge University Press.

[13] http://www.fipa.org/repository/aclspecs.html

29

http://www.voicexml.org/
http://www.fipa.org/repository/aclspecs.html

