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Abstract
We present a method for unsupervised lexi-
cal frame acquisition at the syntax–semantics
interface. Given a set of input strings de-
rived from dependency parses, our method
generates a set of clusters that resemble lex-
ical frame structures. Our work is motivated
not only by its practical applications (e.g., to
build, or expand the coverage of lexical frame
databases), but also to gain linguistic insight
into frame structures with respect to lexical
distributions in relation to grammatical struc-
tures. We model our task using a hierarchical
Bayesian network and employ tools and meth-
ods from latent variable probabilistic context
free grammars (L-PCFGs) for statistical infer-
ence and parameter fitting, for which we pro-
pose a new split and merge procedure. We
show that our model outperforms several base-
lines on a portion of the Wall Street Journal
sentences that we have newly annotated for
evaluation purposes.

1 Introduction

We propose a method for building coarse lexi-
cal frames automatically from dependency parsed
sentences; i.e., without using any explicit seman-
tic information as training data. The task involves
grouping verbs that evoke the same frame (i.e., are
considered to be the head of this frame) and fur-
ther clustering their syntactic arguments into latent
semantic roles. Hence, our target structures stand
between FrameNet (Ruppenhofer et al., 2016) and
PropBank (Palmer et al., 2005) frames. Similar
to FrameNet and in contrast to PropBank, we as-
sume a many-to-many relationship between verb
types and frame types. But similar to PropBank,
we aim to cluster syntactic arguments into gen-
eral semantic roles instead of frame-specific slot

*Both authors contributed equally to this work.

types in FrameNet. This allows us to generalize
across frames concerning semantic roles. As part
of this, we study possible ways to automatically
generate more abstract lexical-semantic represen-
tations from lexicalized dependency structures.

In our task, grouping verb tokens into frames
requires not only distinguishing between differ-
ent senses of verbs, but also identifying a range
of lexical relationships (e.g., synonymy, opposite
verbs, troponymy, etc.) among them. Hence (as
Modi et al., 2012; Green et al., 2004), our prob-
lem definition differs from most work on unsu-
pervised fine-grained frame induction using verb
sense disambiguation (e.g., Kawahara et al., 2014;
Peng et al., 2017). Similarly, forming role clusters
yields generalization from several alternate link-
ings between semantic roles and their syntactic re-
alization. Given, for instance, an occurrence of the
verb pack and its syntactic arguments, not only do
we aim to distinguish different senses of the verb
pack (e.g., as used to evoke the FILLING frame, or
the PLACING frame), but also to group these in-
stances of ‘pack’ with other verbs that evoke the
same frame (e.g., to group instances of pack that
evoke the frame PLACING with instances of verbs
load, pile, place, and so on when used to evoke the
same PLACING frame).

The motivation for this work is twofold. On the
one hand, the frame induction techniques we pro-
pose can be useful in the context of applications
such as text summarization (Cheung and Penn,
2013), question answering (Frank et al., 2007;
Shen and Lapata, 2007), and so on, for languages
where we lack a frame-annotated resource for su-
pervised frame induction, or to expand the cov-
erage of already existing resources. On the other
hand, we are interested in theoretical linguistic
insights into frame structure. In this sense, our
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work is a step towards an empirical investigation
of frames and semantic roles including hierarchi-
cal relations between them.

We cast the frame induction task as unsuper-
vised learning using an L-PCFG (Johnson, 1998;
Matsuzaki et al., 2005; Petrov et al., 2006; Cohen,
2017). As input, our model takes syntactic depen-
dency trees and extracts input strings correspond-
ing to instances of frame expressions, which are
subsequently grouped into latent semantic frames
and roles using an L-PCFG. We use the inside-
outside (i.e., Expectation-Maximization (Demp-
ster et al., 1977; Do and Batzoglou, 2008)) algo-
rithm and a split-merge procedure (Petrov et al.,
2006) for dynamically adapting the number of
frames and roles to the data, for which we em-
ploy new heuristics. As implied, one advantage
of the L-PCFGs framework is that we can adapt
and reuse statistical inference techniques used for
learning PCFGs in syntactic parsing application
(e.g., split-merge). Our experiment shows that the
method outperforms a number of baselines, in-
cluding frame grouping by lexical heads and one
based on agglomerative clustering.

The main contributions of this paper are a) us-
ing L-PCFGs for coarse lexical frame acquisition;
b) a new split-merge routine adapted for this task;
and, c) a new dataset for evaluating the induced
lexical frame-role groupings. In the remainder of
the paper, § 2 describes our statistical model and
its formalization to an L-PCFG. § 3 describes pro-
cedures used for statistical inference. § 4 describes
our evaluation dataset and reports results from ex-
periments. § 5 discusses related work followed by
a conclusion in § 6.

2 From a Latent Model to L-PCFG

We assume that frames and semantic roles
are the latent variables of a probabilistic
model. Given the probability mass function
pmf(F 1, . . . , Fn, R1 . . . Rk, D1, . . . , Dm; C, θ) as
our model, we denote latent frames F i, 1 ≤ i ≤ n,
and roles Ri, 1 ≤ i ≤ k for observations that
are annotated syntactically using Di, 1 ≤ i ≤ m
in the input corpus C. Inspired by Cheung et al.
(2013), we approximate the probability of a
specific frame f with head v, semantic roles
r1 . . . rk filled by words w1 . . . wk and corre-
sponding syntactic dependencies d1 . . . dk (under
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Figure 1: Sample frame structure for (1).

parameters θ) as:

p(f) · p(v|f)∏k
i=1 p(di|f) ·

∏k
i=1 p(ri|f, di) ·

∏k
i=1 p(wi|ri).

(1)

To estimate the parameters of our model, we
translate Eq. (1) to an L-PCFG that captures the
required conditional and joint probabilities.

First, we convert input lexicalized dependency
parses to a set of strings E . Given a verb v and
its dependents wi in a dependency parse tree, we
build input strings in the form of

v root w1 d1 . . . wl dl EOS,

for which we assume v lexicalizes the head of
a frame, w1 . . . wl are the arguments fillers and
d1, . . . , dl are the respective dependencies that
link these fillers to the head v; EOS is a special
symbol to mark the end of string. For the step
from the sentence to input strings, we assume that
dependencies are ordered (e.g., subj precedes dobj
and iobj and they precede prepositional and com-
plement dependents (i.e., nmod:* and *comp).1

Consider (1) as an example; the corresponding
string is the yield of the tree in Fig. 1.

(1) Johnsubj offerroot flowersdobj to Marynmod:to

Given the fixed structure of input strings, we de-
sign a CFG that rewrites them to our expected hier-
archical frame structure consisting of elements F ,
R, D while capturing the conditional probabilities
from Eq. (1). The tree assigning a frame F of type
x with semantic roles of type a, b, c to (1) is for

1Phrasal arguments are reduced to their syntactic head
given by the underlying UD parser. We normalize passive
structures by replacing nsubjpass with dobj. Other syntac-
tic dependents (e.g., case, aux, conj, etc.) are removed. In
case of the same dependencies, surface order in the sentence
is relevant. If necessary, conjunctions are treated when trans-
forming dependency parses to input strings.
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instance given in Fig. 1. More generally, given fi-
nite sets of frames F and of semantic rolesR, our
underlying CFG G = 〈N,T, P, S〉 is as follows:

• T = Tv∪Tn∪D∪{root, EOS}, where Tv is the
set of possible verbal heads, Tn is the set of pos-
sible lexicalizations (fillers) for arguments, and
D is a finite set of dependency relations; root
and EOS are special symbols.
• N = {S} ∪ {F fh | f ∈ F} ∪ {F

f
rem | f ∈ F} ∪

{F fg | f ∈ F , g ∈ D}∪{Rr|r ∈ R}∪{V f | f ∈
F} ∪ {Dg | g ∈ D}.
• P contains the following rules:

– S → F fhF
f
rem for all f ∈ F ;

– F fh → V f Droot for all f ∈ F ;

– F frem → F fg F
f
rem for all f ∈ F , g ∈ D;

– F frem → EOS for all f ∈ F ;
– F fg → Rr Dg for all f ∈ F , r ∈ R, g ∈ D;
– V f → v for all f ∈ F , v ∈ Tv;
– Rr → n for all r ∈ R, n ∈ Tn;
– Dg → g for all g ∈ D ∪ {root}.

With this grammar, an input string derived from a
dependency parsed sentence fully determines the
shape of the tree and the node labels are fixed ex-
cept for the choice of the frame f and the semantic
roles r of the k fillers (i.e., x, a, b, and c in Fig. 1).

The probabilities of the rules correspond to the
conditional probabilities in Eq. (1). The probabil-
ity of S → F fh F frem gives p(F = f), the prob-
ability of V f → v gives p(V = v|F = f), and
so on. During the subsequent inside-outside (IO)
split-and-merge training procedure, the inventory
of frames and roles and the probabilities corre-
sponding to our rules are estimated so that the
overall likelihood of observations is maximized.

3 Method

This section describes statistical inference meth-
ods used for inducing latent frame clusters from
input strings. The scenario we used for parame-
ter fitting (split, merge, smoothing, and generating
clusters) is described in § 3.1. In § 3.2, we describe
our method for computing embedding-based sim-
ilarity between frames, which we use during the
merge process and in our baseline system.

3.1 Parameter Fitting
Given an input corpus parsed into universal de-
pendencies (UD) and converted into a set of input

strings E , we instantiate a model G according to
§ 2. We set |F| = 1 and |R| = |D|, and D, Tv
and Tn are automatically extracted from E . Start-
ing from this, we iteratively perform split-merge
sequences (with an IO parameter estimation in be-
tween), and cluster E to disjoint subsets Ei by find-
ing the most-likely derivations that G yields. We
detail this process in the following subsections.

3.1.1 The IO Algorithm
As a solution to sparsity of observations, we mod-
ify the IO algorithm slightly. We adapt the proce-
dures described in (Eisner, 2016) with the excep-
tion that for computing inside and outside prob-
abilities, instead of mapping terminals to nonter-
minals using an exact matching of the right-hand-
sides of the rules (and respectively their assigned
parameters), we use embedding-based similarities.
I.e., for computing inside probabilities, given sym-
bol a as input, instead of considering A →θ as
rewrite rules and updating the parse chart only by
asserting θ in it, we also consider B →θ bs in
which instead of θ we assert α × θs in the IO ta-
ble, where α is the r2 coefficient correlations of
embeddings for a and bs. During the outside pro-
cedure, θs are updated proportionally w.r.t. to αs
used during the inside parameter estimation pro-
cedure.

3.1.2 Split
We alter the splitting procedure from (Klein and
Manning, 2003a; Petrov et al., 2006) for our ap-
plication. In (Klein and Manning, 2003b; Petrov
et al., 2006), during split, a non-terminal symbol
(which represents a random variable in the under-
lying probabilistic model) is split and its related
production rules are duplicated independently of
its parent, or sibling nodes. We can apply such
a context-independent split only to the Rr non-
terminals but the F f...s must split dependently w.r.t.
their sibling nodes that define the frame structure.
Therefore, to split frame x to two frames y and z,
we replace the entire set {S → F xhF

x
rem, F xh →

V x Droot, F xrem → EOS, F xrem → F xg F xrem,
F xg → Rr Dg, and V x → v} with two similar sets
where x gets replaced with y and z, respectively.
The parameters for the new rules are set to half of
the value of the parameters of the rules that they
originated from with the addition (or subtraction)
of a random ε (e.g., 1e-7) to break symmetry.

Moreover, in our application, training the split
grammar on the whole input is ineffective and at
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a certain point, computationally intractable. The
problem is due to the scope of the split grammar
and the large portion of input strings E that they
span. Splitting a frame’s rules, unlike parameter
fitting for syntactic rules, increases the number of
possible derivations for all E , to the extent that af-
ter a number of split iterations the computation
of the derivations becomes intractable even for a
small E of short length. We address this problem
by using a new strategy for splitting: we not only
split the grammar, but also the input training data.

Before each split, we cluster input strings E to
clusters Ei that G gives (§ 3.1.4) at that point. For
input strings in each cluster Ei, we instantiate a
new Gi and perform parameter fitting and split-
ting independently of other Eis. The correspond-
ing probabilistic Gi is initialized by assigning ran-
dom parameters to its rules and then smoothing
them (§ 3.1.3) by the fitted parameters for G. We
apply the aforementioned process several times,
until the number of independently generated clus-
ters is at least twice as large as |Tv|. At the end of
each split iteration, we collect the elicited Ei clus-
ters (and their respective Gis) for the next merge
process. Given the independence assumption be-
tween roles and frames, pre-terminals that rewrite
roles are split similar to (Petrov et al., 2006).

3.1.3 Smoothing
We apply a notion of smoothing by interpolating
parameters that are obtained in the n−1th iteration
of split-merge with parameters that are randomly
initialized at the beginning of each split-merge it-
eration and, as mentioned earlier in § 3.1.2, when
deriving new Gis from G: For each rule in Gi or
Gn with parameters θ (i.e., the G instantiated for
the next split-merge iteration), we smooth θs using
θ = αθ + (1− α)θn−1, where θn−1 is the already
known and fitted parameter for the corresponding
rule in G. We choose α = 0.1.

3.1.4 Generating Clusters from G

After fitting parameters of G, the frame struc-
ture for an input string is given by its most-likely
viterbi derivation with respect to G. The verb
which is rewritten by F fh is placed to frame-
type/cluster f . Similarly, lexical items that are ar-
gument fillers are assigned to type/cluster r where
r is the structural annotation for pre-terminal Rr

that rewrite them. For example, assuming Fig 1
is the most likely derivation for (1), the verb ‘of-
fer’ is categorized as frame x and its arguments as

roles a, b, and c.

3.1.5 Merge
The model resulting from the split process gen-
erates a relatively large number of ‘homoge-
neous’ clusters that are ‘incomplete’. A subse-
quent merge process unifies these homogeneous-
but-incomplete clusters to achieve a clustering that
is both homogeneous and complete. To this end,
we use heuristics which are based on both the es-
timated loss in likelihood from merging two sym-
bols that span the same input sequence (as pro-
posed previously in Petrov et al. (2006)) as well
as the ‘discriminative similarities’ between the ob-
tained clusters.

Merge by likelihoods does not work: The
heuristics for merge in (Petrov et al., 2006) (i.e.,
minimizing the loss in training likelihood using
‘locally’ estimated inside and outside probabili-
ties) are based on the assumptions that a) pre-
terminals appearing in different places in deriva-
tions are nearly independent, and b) that their ap-
proximation (according to the method proposed
by Petrov et al. (2006)) requires less computa-
tion than computing full derivation trees. How-
ever, neither of these hold in our case: a) most
pre-terminals in our model are dependent on each
other and, b) to compute the loss in likelihood
from a cluster merge requires computation of full
derivation trees (given the interdependence be-
tween pre-terminals that define frame structures).
More importantly, in our application, the outside
probabilities for clusters are always 1.0 and dif-
ferences in the sum of inside probabilities is often
negligible since input strings are spanned more-
or-less by the same set of derivations. For these
reasons (i.e., computation cost and the lack of suf-
ficient statistics), the ‘estimated loss in likelihood’
heuristics is a futile method for guiding the merge
process in our application. We resolve this prob-
lem by leveraging discriminative similarities be-
tween the obtained frame clusters and proposing a
hybrid method.

Our merge approach: In the beginning of a
merge process, we conflate Gis that are obtained
from the previous split procedure to form a G that
spans all input strings. Where applicable, we set
parameters of rules in G to the arithmetic mean
of corresponding ones obtained from the split pro-
cess and normalize them such that sum of the pa-
rameters of rules with the same pre-terminal is 1.0.
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We go through an iterative process: Using the
method proposed in § 3.2 below, the frame in-
stances in the clusters are converted to tensors and
similarities among them are computed. Motivated
by the assumption that split clusters are homoge-
neous, for every pair of clusters cx and cy (x 6= y)
with instances ai ∈ cx and bj ∈ cy, we find
argmaxi,j sim(ai, bj) and argmini,j sim(ai, bj)
(sim is given by Eq. 2 below) and calculate their
harmonic mean as the similarity sc between cx and
cy. Cluster pairs are sorted in a descending order
by sc. Given a threshold δ, for all sc(cx, cy) > δ,
their corresponding production rules (i.e., the sim-
ilar set of rules mentioned in the split procedure)
are merged and their parameters are updated to the
arithmetic mean of their origin rules.

Parameters for this new merged G are updated
through a few IO iterations (in an incremental
fashion (Liang and Klein, 2009)), and finally G
is used to obtain a new clustering. The process
is repeated for this newly obtained clustering until
all the resulting cluster-wise sc similarities are less
than a threshold β.

Computing all derivations for each input string
is time consuming and makes the merge process
computationally expensive, particularly in the first
few iterations. We resolve this issue using a
stratified random sampling and by performing the
aforementioned iterations only on a random sub-
set of input strings in each cluster. Each cluster in
the output of the split process is taken as a stratum
and its size is reduced by 90% by applying a ran-
dom sampling; this random sampling is updated
in each iteration (we use a similar strategy for pa-
rameter estimation, i.e., we update samples in each
estimation iteration). This process reduces the re-
quired time for merge drastically without hurting
the overall outcome of the merge process. It is
worth to mention that after merging clusters cx and
cy, the output does not necessarily contain a clus-
ter cx∪cy. Instead, the resulting clustering reflects
the effect of merging the rules that rewrite cx and
cy in the whole model.

To merge Rr categories, we use the merge
method from (Petrov et al., 2006) based on the ob-
tained likelihoods. After merging frame clusters,
we reduce the number of Rrs by 50%. Since our
method for merging role categories is similar to
(Petrov et al., 2006), we do not describe it here.

3.2 Similarity Between Frame Instances

When necessary (such as during merge), we com-
pute embedding-based similarities between frame
instances similar to methods proposed in (Mitchell
and Lapata, 2008; Clark, 2013). We build a n-
dimensional embedding for each word appear-
ing in our input strings from large web corpora.
Each frame instance is then represented using a
(m+ 1, n)-tensor, in which m is the total number
of argument types/clusters given by our model at
its current stage and n is the dimensionality of the
embeddings that represent words that fill these ar-
guments. To this, we add the embedding for the
verb that lexicalizes the head of the frame, which
gives us the final (m+ 1, n)-tensor.

For two frame-instances represented by tensors
a and b, the similarity for their arguments is

sim-arg(a, b) =
1

k

m∑

i=1

r2(a~vi, b~vi),

in which ~vis are embeddings for the ith argument
filler (

∑n
j=1

~vij 6= 0), r2 is the coefficient of de-

termination, and k =
∑

i[r
2(a~vi, b~vi) 6= 0]. If an

argument is lexicalized by more than one filler, we
replace r2 with the arithmetic mean of r2s com-
puted over each distinct pair of fillers. The overall
sim between a and b is:

sim(a, b) = w1.r
2(a ~vh, b ~vh) + w2.sim-arg(a, b),

(2)
where ~vhs are the embeddings for the lex-
ical heads (i.e., verbs), and w1 and w2

are two hyper-parameters which can be
tuned. For instance, for two hypothetical
structures of Fa:[Head:travel, [Arg1:John,
Arg2:London]] and Fb:[Head:walk, [Arg1:Mary,
Arg3:home]], the similarity between Fa and
Fb is w1r

2( ~travel, ~walk) + w2r
2( ~John, ~Mary),

given that the all these vectors have at least
one nonzero component. During merge we use
w1 = w2 = 0.50.

We build our lexical embeddings of dimension-
ality n = 900 using the hash-based embedding
learning technique proposed in (QasemiZadeh and
Kallmeyer, 2017); before using these embeddings,
we weight them using positive pointwise mutual
information. During evaluation, this combination
of PPMI-weighted hash-based embeddings and
the r2 estimator consistently yielded better results
than using other popular choices such as the co-
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sine of word2vec vectors. We associate this obser-
vation to the imbalanced frequency of the usages
of lexical items in our experiments in the corpora
used to train embeddings (i.e., an English web cor-
pus (Schäfer, 2015) and PTB’s WSJ).

4 Experiments and Results

4.1 Dataset
We derive our data for evaluation from the PTB’s
WSJ sections parsed (using Schuster and Man-
ning, 2016) to the enhanced UD format. We
augment these sentences with semantic role an-
notations obtained from Prague Semantic Depen-
dencies (PSD) (Cinkova et al., 2012) from the
SDP resource (Oepen et al., 2016). Using Eng-
Vallex (Cinková et al., 2014) and SemLink (Bo-
nial et al., 2013), we semi-automatically annotate
verbs with FrameNet frames (Baker et al., 1998).
We choose 1k random sentences and manually
verify the semi-automatic mappings to eventually
build our evaluation dataset of approximately 5k
instances (all). From this data, we use a random
subset of 200 instances (dev) during the develop-
ment and for parameter tuning (see Table 1 for de-
tailed statistics).

Set FT FI V AT AI
all 27 5,324 169 13 10,523
dev 15 200 35 7 393

Table 1: Gold Data: FT, FI, V, AT, and AI denote
the number of frame types, instances, distinct verb
heads, argument types, and argument instances

For these gold instances, we extract input
strings from their UD parses according § 2. Since
we discard verbs without syntactic arguments, use
automatic parses, and do not distinguish argu-
ments from adjuncts, the input strings do not ex-
actly match the gold data argument structures. We
report results only for the portion of the gold data
that appears in the extracted input strings. Table 2
reports the statistics for the induced input strings
and their agreement with the gold data (in terms
of precision and recall).

Input strings are hard to cluster in the sense that
a) all the frames are lexicalized by at least two dif-
ferent verb lemmas, b) many verbs lexicalizes at
least two different types of frames, c) verb lem-
mas that lexicalize a frame have long-tailed dis-
tributions, i.e., a large proportion of instances of
a frame are realized at surface structure by one

Set FT FI RF V GR AI AIG PA RA

all 27 4,984 0.94 167 56 10,893 7,305 0.67 0.76
dev 15 191 0.95 34 24 450 277 0.62 0.76

Table 2: Input strings extracted from the UD
parses: GR, AIG, RF , RA, and PA denote, respec-
tively, the number of distinct grammatical rela-
tions, syntactic arguments that are a semantic role
in the gold data, recall for frame and arguments,
and precision for arguments. The remaining sym-
bols are the same as Table 1.

lemma while in the remaining instances the frame
is evoked by different lemmas, and d) last but not
least, the frame types themselves have long-tailed
distribution. Table 3 shows examples of frames
and verb lemmas that lexicalize them; in the table,
the most frequent lemma for each frame type is
italicized.

4.2 Evaluation Measures

We evaluate our method’s performance on a) clus-
tering input strings to frame types, and b) clus-
tering syntactic arguments to semantic role types.
To this end, we report the harmonic mean of
BCubed precision and recall (BCF) (Bagga and
Baldwin, 1998), and purity (PU), inverse purity
(IPU) and their harmonic mean (FPU) (Steinbach
et al., 2000) as figures of merit. These measures
reflect a notion of similarity between the distribu-
tion of instances in the obtained clusters and the
gold/evaluation data based on certain criteria and
alone may lack sufficient information for a fair un-
derstanding of the system’s performance. While
PU and IPU are easy to interpret (by establishing
an analogy between them and precision and re-
call in classification tasks), they may be deceiving
under certain conditions (as explained by Amigó
et al., 2009, under the notions of homogeneity,
completeness, rag bag, and ‘size vs. quantity’ con-
straints). Reporting BCF alongside FPU ensures
that these pitfalls are not overlooked when our sys-
tem’s output are compared quantitatively with the
baselines.

4.3 Baselines

As baselines, we report the standard all-in-one-
class clustering (ALLIN1) and the one-cluster-
per-instance (1CPERI) baselines, as well as the
random baseline (Rn) in which instances are
randomly partitioned into n clusters (n being
the number of generated clusters in our sys-
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Frame #T #V {Examples of verbs occurrences}
ADORNING 26 10 {fill:8, cover:4, adorn:2 . . . }
PLACING 121 21 {place:62, pack:3, wrap:1. . . }
FILLING 35 12 {fill:14, pack:6, cover:3, wrap:2 . . .}
ACTIVITY START 290 2 {begin:182, start:108}
PROCESS START 188 2 {begin:143, start:45}
CHANGE POSITION ON SACLE 1259 17 {fall=356, rise=271, drop=135, decline=119, . . .}

Table 3: Examples of frames in our evaluation set and verbs that evoke them; #T and #V denote the total
number of instances for the frame and the number of distinct verb lemmas that evoke them, respectively.

tem’s output). Moreover, for frame type clus-
tering, we report the one-cluster-per-lexical-head
baseline (1CPERHEAD). For role clustering,
we report the additional one-cluster-per-syntactic-
category baseline (1CPERGR). Similar to the
most-frequent-sense baseline in word sense in-
duction and disambiguation problems, the latter
1CPERHEAD and 1CPERGR are particularly hard
to beat given the heavy-tailed distribution of lexi-
cal items in frame and role categories.

For both subtasks, an additional baseline from
(Modi et al., 2012) and (Titov and Klementiev,
2012) could be an interesting comparison to our
method with the state of the art in frame head
clustering and unsupervised semantic role label-
ing, particularly given that (Titov and Klementiev,
2012) and respectively (Modi et al., 2012) employ
Gibbs sampling for statistical inference, whereas
we use the IO algorithm. We are, unfortunately,
not able to access codes for Modi et al. (2012)
and the system in Titov and Klementiev (2012) re-
lies on features that are engineered for treebanks
in the format and formalisms set for the CoNLL-
2008 shared-task. As explained by Oepen et al.
(2016), mapping to (and from) formalisms used in
CoNLL-2008 (from–to) those proposed in SDP-
PSD (used in this paper) is a nontrivial task. We
expect that an automatic conversion from our data
to the CoNLL-2008 format as an input for (Titov
and Klementiev, 2012) would not reflect the best
performance of their method. Nonetheless, we re-
port the result from this experiment (marked as
TK-URL) later in this section, not as a baseline,
but to confirm (Oepen et al., 2016).

Lastly, as an extra baseline for frame type clus-
tering, we report performance of a HAC method.
The HAC method is described below (§ 4.3.1).

4.3.1 A Baseline HAC Method

To build a frame clustering using HAC, we begin
by initializing one cluster per instance and itera-

tively merge the pair of clusters with the lowest
distance, using average-link cluster distance. For
two clusters A and B, we define their distance as:

Dis-Cl(A,B) = 1
l(l−1)

∑
fi∈A

∑
fj∈B 1− sim(fi, fj),

in which sim(fi, fj) is given by Eq. 2, and l =
|A| + |B|. We iteratively update the distance ma-
trix and agglomerate clusters until we reach a sin-
gle cluster. During iterations, we keep track of the
merges/linkages which we later use to flatten the
built hierarchy into q clusters. To set our base-
line, by constraining w1 + w2 = 1 in Eq. (2), we
build cluster hierarchies for different w1 and w2

(starting with w1 = 0.0, w2 = 1 − w1 and grad-
ually increasing w1 by 0.1 until w1 = 1.0) and
find w1, w2, and q that yield the ‘best’ clustering
according to the BCF metric (w1 = 0.8, w2 =
0.2, q = 140). For this baseline, the argument
types are defined by their syntactic relation to their
heads, e.g., subj, dobj, and so on.

4.4 Results

Since our method involves stochastic decisions, its
performance varies slightly in each run. Hence,
we report the mean and the standard deviation
of the obtained performances from 4 independent
runs. The reported results are based on the out-
put of the system after 7 split and merge iterations.
After tuning parameters on the dev set, we choose
δ = 0.55 during merge, and in each inner-merge
iteration subtract δ by 0.01 until δ < β = 0.42.

Quantitative Comparison with Baselines Ta-
bles 4 and 5 show the results for clustering input
strings to frame types and semantic roles, respec-
tively. On frame type clustering, our method (de-
noted by L-PCFG) outperforms all the baselines.
FPU and BCF for our system are simultaneously
higher than all the baselines, which verifies that
the output contains a small proportion of “rag bag”
clusters. The system, however, tends to generate
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Method #C PU IPU FPU BCF
ALLIN1 1 22.35 100 36.54 17.43
1CPERI 4984 100 0.54 1.08 1.08

1CPERHEAD 167 94.38 59.59 73.06 63.53
R235 235 24.7 2.03 3.75 1.79
HAC 140 75.07 65.52 69.97 61.74

L-PCFG (Avg.) 230.25 86.2 73.64 79.4 71.29
L-PCFG (Std. Dev.) ±6.24 ±3.07 ±0.96 ±1.17 ±1.49

Table 4: Results for head groupings: #C de-
notes the number of induced clusters by each
method/baseline; the last two rows reports the av-
erage and the standard deviation for the obtained
results using the L-PCFG model.The remaining
abbreviations are introduced in § 4.2 and 4.3.

Method #C PU IPU FPU BCF
ALLIN1 1 47.73 100 64.62 55.43
1CPERI 7257 100 0.18 0.36 0.36

1CPERGR 32 92.89 79.83 85.86 76.71
R24 24 47.73 5.36 9.64 7.79

TK-URL 333 85.7 15.01 25.54 11.71
L-PCFG (Avg.) 24 90.36 79.25 84.44 74.65

L-PCFG (Std. Dev.) ±5.29 ±0.33 ±1.31 ±0.61 ±1.38

Table 5: Results on clustering of syntactic argu-
ments to semantic roles.

many incomplete yet homogeneous clusters (as we
discuss below). With respect to roles, however, the
method’s performance and its output remains very
similar to the syntactic baseline (BCF=97.3).

What is in the clusters? The ability of the sys-
tem to successfully cluster instances varies from
one gold frame category to another one. The
most problematic cases are the frame types AC-
TIVITY START and PROCESS START, as well as
PLACING. While the system put instances of
‘start’ and ‘begin’ verbs in one cluster, it fails to
distinguish between ACTIVITY START and PRO-
CESS START. Regarding the PLACING frame, the
system places verbs that evoke this frame in dif-
ferent clusters; each cluster consists of instances
from one verb lemma. In our opinion, this is due
to the frequent idiomatic usages of these verbs,
e.g., ‘to lay claim’, ‘to place listing’, ‘to position
oneself as’ and so on. This being said, however,
the system is capable of distinguishing between
different readings of polysemous verbs, e.g., in-
stances of the verb ‘pack’ that evoke the FILLING

frame end up in different clusters than those evok-
ing the PLACING frame. Additionally, for a num-
ber of frame types, we observe that the system
can successfully group synonymous (and oppo-
site) verbs that evoke the same frame into one clus-
ter: representative examples are the instances of

the CHANGE POSITION ON A SCALE frame that
are evoked by different verb lemmas such as ‘de-
cline’, ‘drop’, ‘fall’, ‘gain’, ‘jump’, ‘rise’, . . . ,
which all end up in one cluster. The output of the
system also contains a large number of small clus-
ters (consisting of only one or two instances): we
observe that these instances are usually those with
wrong (and incomplete) dependency parses.

5 Related Work

Our work differs from most work on word sense
induction (WSI), e.g. (Goyal and Hovy, 2014; Lau
et al., 2012; Manandhar et al., 2010; Van de Cruys
and Apidianaki, 2011), in that not only do we dis-
cern different senses of a lexical item but also we
group the induced senses into more general mean-
ing categories (i.e., FrameNet’s grouping). Hence,
our model must be able to capture lexical rela-
tionships other than polysemy, e.g., synonymy,
antonymy (opposite verbs), troponymy, etc.. How-
ever, our method can be adapted to WSI, too.
Firstly, we can assume that word senses are ‘in-
compatible’ and thus they necessarily evoke dif-
ferent frames; subsequently, the induced frame
clusters can be seen directly as clusters of word
senses. Otherwise, the proposed method can be
adapted for WSI by altering its initialization, e.g.,
by building one-model-at-a-time for each word
form (i.e., simply altering the input).

Despite similarities between our method and
those proposed previously to address unsupervised
semantic role induction (Carreras and Marquez,
2005; Lang and Lapata, 2010, 2011; Titov and
Klementiev, 2012; Swier and Stevenson, 2004),
our method differs from them in that we at-
tempt to include frame head grouping information
for inducing roles associated to them. In other
words, these methods leave out the problem of
sense/frame grouping in their models.

Our work differs in objective from methods for
unsupervised template induction in information
extraction (IE) (e.g., MUC-style frames in Cham-
bers and Jurafsky (2009, 2011) and its later refine-
ments such as (Chambers, 2013; Cheung et al.,
2013; Balasubramanian et al., 2013), and in a
broader sense attempts towards ontology learn-
ing and population from text (Cimiano et al.,
2005)). Our focus is on lexicalized elementary
syntactic structures, identifying lexical semantic
relationships, and thereby finding salient patterns
in syntax–semantic interface. However, in IE
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tasks the aim is to build structured summaries
of text. Therefore, the pre-and post-processing
in these induction models are often more com-
plex/different than our method (e.g., they require
anaphora resolution, identifying discourse rela-
tions, etc.). Lastly, we deal with a broader set of
verbs and domains and more general frame defini-
tions than these methods.

As stated earlier, Modi et al. (2012) propose the
most similar work to ours. They adapt (Titov and
Klementiev, 2012) to learn FrameNet-style head
and role groupings. Modi et al. (2012) assume
roles to be frame-specific, while our role clusters
are defined independently of frame groupings (as
expressed in Eq. 1). Last, with respect to research
such as (Pennacchiotti et al., 2008; Green et al.,
2004) in which lexical resources such as Word-
Net are used (in supervised or unsupervised set-
tings) to refine and extend existing frame reposito-
ries such as FrameNet, our model learns and boot-
straps a frame repository from text annotated only
with syntactic structure in an unsupervised way.

6 Conclusion

We proposed an unsupervised method for coarse-
lexical frame induction from dependency parsed
sentences using L-PCFG. We converted lexical-
ized dependency trees of sentences to a set of in-
put strings of fixed, predetermined structure con-
sisting of a verbal head, its arguments and their
syntactic dependencies. We then use a CFG
model (subsequently L-PCFG) to shape/capture
frame structures from these strings. We adapted
EM parameter estimation techniques from PCFG
while relaxing independence assumptions, includ-
ing appropriate methods for splitting and merging
frames and semantic roles and using word embed-
dings for better generalization. In empirical eval-
uations, our model outperforms several baselines.
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