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Investigating the Use of Distributional Semantic Models for
Co-Hyponym Identification in Special Corpora

by Behrang QasemiZadeh

Abstract

Knowledge is assumed by cognitive science to consist of concepts that are organ-
ised and maintained by complex processes taking place in human minds. These processes
are not yet accessible directly. Language is still the primary medium for communicating
knowledge and presumably linguistic objects and structures are expressions of knowledge
and its organisation in mind. Collecting terms (i.e., creating a specialised vocabulary) and
capturing their relationships are thus important mechanisms for distilling knowledge from
specialised texts and for formalising it for machines. The approach taken in this thesis is
to analyse the co-hyponymy relationships between terms as an organisational mechanism.

Co-hyponyms are sets of lexical units sharing a common hypernym; bank and
building society, for example, are co-hyponyms of the hypernym financial organisation.
Analysing the co-hyponymy relationships between terms is important because it bridges
the semantic gap between a) specialised lexical knowledge, b) the quantitative interpreta-
tion of meanings in specialised discourse, and c) machine-accessible conceptualisation of
knowledge. This thesis proposes the use of a vector-based distributional representation of
terms in order to construct a quantitative conceptual model of kinds-sorts in a given field
of knowledge.

Among empirical methods for analysing linguistic structures, distributional ap-
proaches to semantics encode language data to models that should correspond to the
meanings of linguistic entities. The meaning of an entity, such as a word or a phrase,
is assumed to be a function of its statistical distribution in contexts. In order to use these
methods we thus need to define (a) the contexts, that is, which statistical information
must be collected; and (b) the functions, that is, how this information must be used to
correlate with a meaning. This thesis is a study of corpus-based distributional methods
for characterising co-hyponymy between terms.

Terms are represented as vectors to form a so-called term-space model. To obviate
the curse of dimensionality and to facilitate the construction of models, novel methods
employing sparse random projections are proposed. Random Manhattan indexing is used
to construct `1-normed spaces and random indexing for `2-normed spaces. Following
these steps a memory-based classifier exploits the distance between vectors to identify
the presence of targeted co-hyponymy relationships. An evaluation is also performed to
assess any reciprocal influences of the method’s parameters on its performance. User-
friendliness, flexibility in updating and maintenance, and an innate capacity to resemble
conceptual structures in a domain knowledge are the advantages of this method.
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O snail
Climb Mount Fuji,
But slowly, slowly!
Kobayashi Issa (1763–1828).
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4 Chapter 1. Introduction

1.1 Motivation

Directly accessing human thoughts and transferring the knowledge they possess to ma-
chines is still far beyond the reach of technology.1 Language—and thus text—is still the
main vehicle for knowledge dissemination. An ever-increasing amount of text data in our
digital era manifests the fluid nature of knowledge and its rapid growth. However, captur-
ing knowledge from text and representing it in a machine-accessible format is a tedious
and time-consuming problem. Since the early days of commercial computers, this has
resulted in difficulties in developing knowledge-based systems—as is still best described
by the term knowledge acquisition bottleneck coined by Feigenbaum (1980).

Automated text analysis techniques have thus been developed to facilitate the pro-
cess of knowledge acquisition from text and to improve the productivity of knowledge
workers.2 Evidently, the development of these methods has evolved into several mul-
tidisciplinary research areas. In these research, the study of knowledge and its relation-
ship to language is a common theme. Concepts are often seen as the constituents of know-
ledge; disputes about their nature, structure, and relationship to language and linguistic
communication, however, have led to different ways of formulating research questions in
these studies.3 Disregarding these differences, the essence of the problem has remained
the same: bridging the semantic gap between text and machine-accessible knowledge
structures (see Brewster, 2008, chap. 2 for a thorough perspective).

In the study of language structure and its relationship with knowledge, much at-
tention has been paid to lexical units known as terms. Human knowledge is an expression
of a plurality of domains of knowledge. In each domain, terms constitute a specialised
vocabulary to communicate knowledge.4 Since concepts are abstract mental objects that
cannot be sensed, terms are often seen as labels to access salient concepts in a domain
knowledge (L’Homme and Bernier-Colborne, 2012). As a result, identifying terms and
constructing terminological resources can be considered as a stepping-stone for construct-
ing domain-specific knowledge bases. For instance, Brewster et al. (2009) suggest that
identifying terms is the key step for building a domain ontology. The discipline of termin-
ology, and its sub-discipline computational terminology, has developed as a result of the
systematic study of terms (see Chapter 3).

Specialised vocabularies are invented mainly to reduce lexical ambiguity. General
language words are inherently vague due to their envisaged function in natural language
communication systems—that is, a finite set of words are used to communicate innumer-

1Such as depicted in Star Trek by the Vulcan mind meld and the Marijne VII beings communication
ability; however, a similar technology is not yet available to the computer access and retrieval system in the
29th century (Roddenberry, n.d.).

2Or, breaking the knowledge acquisition bottleneck, as put by the artificial intelligence community.
3See Margolis and Laurence (2014), for a gentle philosophical explanation.
4This perspective is maintained throughout this thesis. Hence, in this thesis, it is assumed that the

interpretation of the meanings of a term is bounded to a particular domain knowledge.
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able concepts.1 To alleviate ambiguity in the process of knowledge dissemination (e.g.,
technical and scientific writing), special attention is paid to lexical cohesion (e.g., as em-
phasised in technical writing pedagogy).2 In achieving this goal (i.e., lexical cohesion)
and to ensure precision in communication, the invention of terms for reducing lexical
ambiguity is a dominant mechanism employed in technical writing.3

In this process, the collection of documents that represents a domain knowledge,
as a whole, constitutes the discourse in which meanings of terms are interpreted.4 As
such, lexical cohesion is established over the corpus and not individual documents or text
segments.5 Empirical studies in natural language processing—particularly, word sense
disambiguation—support this argument. Results obtained based on generalisations of the
so-called one sense per discourse (OSD) hypothesis by Gale et al. (1992) are well-known
examples.6 Accordingly, Martinez and Agirre (2000) show that the OSD hypothesis is
strongly held in corpora that share a related genre or topic. Similarly, enhances in the
performance of word sense disambiguation algorithms as a result of domain-adaptation
are also evidence that support the proposed argument (e.g., see Chan and Ng, 2007).

In computational terminology, automatic term recognition (ATR) techniques are
often at the centre of attention. ATR techniques are developed as an (assistive) tool for
extracting terms from text and maintaining up-to-date inventories of specialised vocabu-
laries. ATR algorithms do not specify semantic relationships between terms. The input
of ATR is often a domain-specific corpus,7 and the output is an unstructured set of terms.
These terms signify a broad spectrum of concepts from the domain knowledge that they
represent. However, in many applications (e.g., in ontology-based information systems8),
the extracted terms are required to be organised to meet demands or to enhance perform-
ances of information systems. An analogy of this convention is the method employed in
the Princeton WordNet lexical database (Fellbaum, 1998) for organising words.

WordNet distinguishes between word and concept: a word is a lexical form of a
concept (or meaning). The relationship between words and concepts is assumed to be
many-to-many. Hence, synonymy is one of the main relationships employed to organise

1The ambiguity of words is not limited to polysemy; see Murphy (2002, chap. 11, p. 404) for an elab-
oration of the meaning of the word vague in this context.

2For example, see Halliday and Hasan (2013, chap. 6).
3In general language a similar mechanism is used, too, perhaps using compounding: ‘The process of

forming a word by combining two or more existing words (Trask, 2013)’.
4Note that what constitute this whole and the discourse is a subject of study and a research question in

itself (e.g., see Wilks and Brewster, 2009, chap. 4).
5Also, see the complementary perspective given based on Zellig Harris’s work in Section 1.3.
6As cited by Wilks and Tait (2005a), Karen Spärk Jones must be acknowledged as the pioneer of

introducing ideas of this nature.
7For an account of the term domain-specific (or, special) corpus see Section 1.3. Also, note that de-

pending on the application and availability of information resources, an ATR algorithm can use additional
background knowledge, such as an existing terminological resource—see Chapter 3.

8Or, the classic property assignment (slot filling) task in Minsky’s (1974) frame-based knowledge rep-
resentation systems.
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words.1 In WordNet, words that refer to the same concept are synonymous and organised
as one synset (Miller et al., 1990). In turn, the synonym relation between words and con-
structing synsets can be seen as the mechanism employed to denote concepts.2 In contrast,
Miller et al. define another set of relationships between ‘word meanings’ (i.e., concepts or
synsets in WordNet). Among these relations, the hyponymy–hypernymy is a transitive and
asymmetrical relationship between synsets employed to organise general English nouns.
The result is a hierarchical structure (i.e., a taxonomy), in which a hyponym synset is
classified below its superordinate.3

This thesis suggests an organisation of terms based on co-hyponymy relationships
between them, in analogy to the role that the synonymy relationship plays for organising
words in WordNet. Terms and their corresponding concepts are usually organised into
semantic categories; each category characterises a group of terms from ‘similar’ concepts
in a domain knowledge—that is, a type-of or is-a relationship between a set of terms and
their superordinate.4 Terms organised under a particular hypernym are in a co-hyponymy
relationship simply because they are hyponym of the same hypernym. For example, in an
application, one may consider terms such as corpus, dictionary, bilingual lexicon, and so
on as co-hyponyms under the hypernym language resource (see Figure 5.1).5

Using co-hyponymy as a basis for organising terminologies can be motivated by
at least two observations:

a) Persistency: that is, many practical applications of the co-hyponymy relationships
(which have emerged under various names and for diverse reasons, as is abridged
in the following paragraphs); and,

b) Regularity: that is, in a specialised vocabulary, the co-hyponymy relationship between
terms is more frequent than other types of relationships such as synonymy.

The latter is a direct outcome of the deliberate act of reducing lexical ambiguity in domain
knowledge dissemination and in adopted perspectives in terminology (see Chapter 3).
Although a synonymy relationship between terms exists (mainly as a function of term
variation such as addressed by Freixa, 2006), to a large extent synonymy is (and to an
extent polysemy) less frequent than co-hyponymy in terminological resources. In turn, the

1Inarguably, Jones is the originator of the discussion about the relationship between semantic classes
and the synonymy relationship between words (see Jones, 1986).

2Synonymy and synset construction are two sides of the same coin, as Wilks and Tait (2005a) explain.
3See also Resnik’s (1993) elaboration on the class-based approach to lexical relationships.
4The study of the nature of this kinds-sorts relationship and how it is established (e.g., as examined

by Carlson, 1980), unfortunately and although quite relevant, is beyond the scope of this thesis. A recent
stimulating discussion on kind-level and object-level nominals can be found in Acquaviva (2014). Also, an
applied perspective in the context of knowledge engineering is given by Cimiano et al. (2013). This thesis
deliberately does not distinguish between the delicate difference between form and concept.

5This discussion is further extended in Chapter 5. As explained in Section 5.1, in the context of mapping
a vocabulary to a domain ontology, terms that are reified to same ontological references are considered co-
hyponyms.
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synset-based mechanism employed in WordNet is not effective for organising entries of a
terminological resource, at least as a conceptual denotation (categorisation) mechanism.1

The overture proposed in the above paragraphs leads us to an important, though in-
direct outcome, of the presented study. Organising terms by characterising co-hyponymy
relationships can be seen as a step towards bridging the semantic gap between the three
elements a) lexical knowledge,2 b) a conceptual representation of a domain knowledge,
and c) a quantitative interpretation of meaning of terms in a specialised discourse. Given
this perspective, this thesis is an investigation of vector-based distributional representa-
tions of terms in order to form a quantitative model of kinds-sorts that resembles a ‘cor-
relate to conceptual representations3 (as nicely put by McNally, 2015)’.4

The proposed co-hyponymy-based mechanism for organising specialised vocab-
ularies, in turn, paves the road towards a class-based approach to the manipulation of
terms on the basis of their distributions in domain-specific corpora (i.e., in a similar fash-
ion that Resnik (1993) and Brown et al. (1992) suggest for words in general language).
The list of literature that motivates the identification of co-hyponym terms is beyond the
references listed in this section; the emphasis that Adrienne Lehrer puts on the structure
of vocabulary and its relationship to meaning is particularly worthwhile mentioning (e.g.,
see Lehrer, 1978). It is also important to note that co-hyponymy is not sufficient for cap-
turing all the semantics in a specialised vocabulary,5 but it is an essential relationship for
extending the inventory of relationships that address a number of practical problems in
knowledge engineering.

Section 1.2 continues this discussion from a computational perspective, followed
by the complementary view of natural language processing in Section 1.3. Section 1.4
enumerates the practical research questions investigated in this thesis. A summary of
contributions is listed in Section 1.5. Section 1.6 provides readers with information about
the structure of this thesis.

1.2 Implied Computational Challenges: A Solution
Although Section 1.1 promotes a novel perspective for organising terminologies based
on their distributional similarities in corpora (as with other researchers such as McNally
and Herbelo (2015)), the extraction of co-hyponym terms is not a new task by all means.
The identification of co-hyponymy relationships as a linguistic phenomenon has been

1The recursive nature of hyponym–hypernym relationship can result in a controversy: at a very fine
level of conceptual granularity, perhaps, there is no difference between synonymy and co-hyponymy.

2If one insists that it is different from the knowledge itself.
3Again, if we can conceive such thing without language.
4See also Agres et al. (2015) who apply a similar principle to investigate conceptual relationships in

the context of music creativity (cognition).
5For example, similar to the problems resulted from is-a overload (as described by Guarino, 1998) and

as implied by the term tennis problem in the context of the WordNet organisation (e.g., as explained recently
by Nimb et al., 2013).
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addressed previously to meet demands in various use-cases—ranging from entity recog-
nition and term classification methods to taxonomy learning tasks (see also the comple-
mentary introduction in Chapter 5).

The most established examples of methods that, in fact, extract co-hyponyms are
entity taggers. Typically, lexical items of a certain type are annotated manually in a cor-
pus. In this context, type is the hypernym or the superordinate, and annotated lexical
items or entities are a group of co-hyponyms. The corpus is then employed to develop an
entity tagger often in the form of a sequence classifier. These methods rely on manually
annotated data, in which each mention of a term and its concept category (i.e., the hyper-
nym) must be annotated. Bio-entity taggers are familiar examples of this type. Provided
that enough training data is available, a reasonable performance can be attained in these
recognition tasks (e.g., see report in Kim et al., 2004).

Apart from entity taggers that identify co-hyponyms, as described in Chapter 3,
the co-hyponymy identification has also been addressed by a number of methods known
as term classification (e.g., see Nigel et al., 1999). Given a taxonomy, term classification
techniques, similar to entity taggers, often employ a supervised learning classification
method to label terms with their hypernyms. Apart from delicate differences between
previously introduced methods, they lack a number of features. These methods often do
not provide a model of terms that can be used as their (intermediate) semantic represent-
ation of terms. The output is often a label, often without a degree of similarity between
terms and with no built-in mechanism for representation of conceptual structures. In ad-
dition, in these methods, the dynamic nature of the co-hyponymy relationship between
terms is largely ignored.

In a study, Lamp and Milton (2012) describe that the employed schema for term
categorisation (i.e., the co-hyponym groups) not only changes by the dynamic of a domain
knowledge, but also by the way that terms are shared and used at a specific given point in
time. Hence, in a given categorisation of terms, change is inevitable—not only from a dia-
chronic perspective, but also on a synchronic level and depending on the parties involved
in the communication process. Comparably, it may be required to organise an existing ter-
minological resource in order to address the constantly changing demands of an inform-
ation system. This problem has been largely overlooked in methods previously proposed
for knowledge acquisition from text (and, the identification of co-hyponym terms).

The major research challenges to develop a mechanism to address the problems
mentioned above can be summarised as follows:

1) The mechanism must identify co-hyponymy relationships between terms—that is,
the association of a term to a particular hypernym or a category of concepts.

2) The mechanism must be capable of capturing the dynamic nature of the co-hyponym
groups in a domain knowledge (e.g., as in Lamp and Milton, 2012).

3) The mechanism must be capable of resembling the conceptual structure of a domain
knowledge in some sense (see Section 1.1).
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Valid Terms

Terms from the
Concept Category Cp

Candidate Terms

Combinations of Tokens in
the Special Corpus

Figure 1.1: Venn diagram that illustrates the relationships among candidate terms, valid terms,
and a particular category of terms Cp. ATR targets the extraction of candidate terms and the iden-
tification of valid terms. However, the proposed term classification task targets the identification
of co-hyponym terms—that is, a subset of valid terms.

The first challenge, in general, is non-trivial since terms cannot be distinguished
explicitly from lexical units that are not a term. Co-hyponym terms in particular can
not be distinguished from other terms. Devising such a mechanism implies a level of text
understanding. Therefore, it is an open research question. The second and third challenge
listed above rule out the use of previously employed techniques such as entity tagging
for finding and encoding co-hyponymy relationships between terms. Entity tagging and
other supervised methods are too rigid to be used as an approach to reflect the dynamic of
co-hyponym groups and to reflect various co-existing conceptualisation structures (e.g.,
manual annotations must be revised, the underlying classifiers must be retrained, or even
a new classifier must be added to find and represent a new co-hyponym group).

As illustrated in Figure 1.1, identifying a group of co-hyponym terms in a termin-
ological resource is equivalent to charactering a subset of valid terms. Evidently, from a
computational perspective, the co-hyponym identification can be boiled down to a clas-
sification task. As suggested above, this formulation of the problem has been adopted
in a number of previously proposed methods (e.g., see Nigel et al., 1999; Afzal et al.,
2008; Kovačević et al., 2012). However, in contrast to these methods and in order to
address the research challenges itemised above, this thesis proposes a justification of the
co-hyponym identification task in the general framework of distributional semantics and
using a similarity-based reasoning process that employs memory-based learning. In turn,
the proposed methodology is evaluated systematically.

I assume that the association of a term to a category of concepts (i.e., a co-
hyponym group) can be characterised with respect to its co-occurrence relationships in
the corpus. Such being the case, I hypothesise that terms from similar concept categor-
ies tend to have similar distributional properties. In order to quantify these distributional
similarities, I employ vector spaces: a mathematically well-defined framework, which
has been widely used in text processing (Turney and Pantel, 2010). In a vector space,
candidate terms are represented by vectors in a way that the coordinates of the vector
determine the correlation between candidate terms and the collected co-occurrence fre-
quencies. Consequently, the proximity of candidate terms can be used to compare their
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distributional similarities. The result, as implied by Schütze (1993) and delineated later
by Widdows (2004) and Sahlgren (2006), is a geometric metaphor of meaning: a semantic
space that is, accordingly, called a term-space model.

In this term-space model, the task is to identify a particular paradigmatic rela-
tionship between terms—that is, co-hyponymy. It is assumed that each group of co-
hyponym terms can be characterised using a set of reference terms or examples (shown
by Rs)—that is, a small number of terms (e.g., 100) that are annotated with their corres-
ponding hypernym (i.e., concept category). The distance between vectors that represent
candidate terms and the vectors that represent Rs is assumed to determine the associ-
ation of candidate terms to the group of co-hyponyms represented by Rs. This similarity-
based reasoning framework is then implemented based on the principles of Daelemans
and van den Bosch’s (2010) memory-based learning—that is, using an instance-based
k-nearest neighbours (k-nn) algorithm, as described later in Chapter 5. Notably, k-nn
introduces a technique for similarity-based reasoning that can meet the requirements im-
posed by the dynamic nature of co-hyponym groups (i.e., the ability to update the rational
behind the reasoning process at any time during the use of system with minimum effort).
To reflect changes in the structure of co-hyponym groups, it is only required to update
Rs—that is, to provide a new set of examples.

The use of this proposed method, however, is hampered by two major (related)
obstacles:

1. the curse of dimensionality: In the proposed term-space model, due to the Zipfian
distribution of words in text, vectors that represent candidate terms are usually high
dimensional and sparse—that is, most of the elements of the vectors are zero. The
high dimensionality of vectors hinders computation and diminishes the method’s
performance; the sparsity of vectors is likely to diminish the discriminatory power
of a constructed term space model (see Chapter 2).

2. the inflexibility of models to accommodate updates: In addition, changes in the doc-
uments that represent a domain knowledge or adding new candidate terms, inevit-
ably demands changes in the structure of the vector space that represent the domain
knowledge. Previous methods employ the so-called one-dimension-per-context-
element (see Chapter 2). Put simply, in these methods of vector space construction,
the structure of vectors is firmly controlled by the input text-data. The basis of
vectors (i.e., informally their dimension) is determined by the words that co-occur
with terms. An update in a model (i.e., changes in the collection of documents or
terms) demands a change in all the vectors since new dimensions must be appended
or removed from the model. This is not acceptable considering the fact that models
usually are large in size and updates are frequently necessary to reflect the dynamic
of a domain knowledge.

In the presented study, special attention is paid to these problems. As a result, so-called in-
cremental techniques using random projections are proposed to avoid the obstacles listed
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above (see Chapters 4 and 5).
As explained thoroughly in the following Section 1.3, in distributional analyses of

languages, a major research is the study of co-occurrence relationships with respect to a
targeted task (here, co-hyponymy identification). For example, in rule-based information
extraction methodologies, the task of a researcher can be to identify and then characterise
linguistic patterns in a formal language, such as regular expressions or more sophisticated
grammar rules. In distributional methods, a similar effort is required; however, in another
form and using mathematical tools other than rules. Although a distributional model is
built automatically, research is still required to:

a) define the way these models must be constructed;
b) and then to (b) set variable parameters of the envisaged model (e.g., see the pro-

posed research questions in Section 1.4 and the evaluation parameters discussed in
Section 5.3, Chapter 5).

Evaluation of distributional models in general, and, in particular, the proposed dis-
tributional model for identifying co-hyponym terms, in a way that the interdependencies
between parameters are assessed, remains an untouched area of research. Evidently, a
distributional model, such as the one proposed in this thesis, is a multi-parameter system
in which the interdependence between parameters is not known. In previous research, this
fact has often been overlooked; hence, parameters of a model have been mostly evaluated
independently of each other. To address this problem, much of the work in this thesis is
devoted towards a holistic evaluation of the constructed models.

1.3 The Natural Language Processing Perspective
The motivation for this study can also be described from the perspective of natural lan-
guage processing. Natural languages are certainly the most important vehicles for inform-
ation creation and dissemination. Consequently, natural language processing has emerged
as an important interdisciplinary research field that melds linguistics with computer and
information science. The major objective of research in this area has been to establish
an abstract system that characterises natural language. The interpretation of this abstract
system must enable computers to represent, store, access, process, and unlock informa-
tion that is encoded in natural languages, for instance as explained in the motivation for
this thesis.

In contrast to research topics such as human language technology—which pursues
the ultimate goal of natural language communication between man and machine similar
to man-to-man communication—or, for example, computational cognitive science and
psycholinguistics—which study the underlying mechanisms of understanding language
in the human mind—natural language processing is modestly concerned with finding a
suitable model of language to fulfil a particular task. Although all these areas of research
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discern the problem of natural language understanding and the meaning of meanings, in
natural language processing the focus is on practical applications. To achieve practicality,
then, natural language processing deliberately simplifies aspects of natural language.1

The foundation of natural language processing and the method proposed in this
thesis can be traced back to as early as the 1950s and the growing availability of com-
mercial computers. On one side, computers facilitated processing language corpora (i.e.,
a collection of text data); on the other side, using computers for information processing
stimulated the need for building computable models of language. The product was the
formation of a strong empiricist2 approach towards analysing languages and the develop-
ment of a set of data-driven techniques for their automatic processing—what are nowadays
referred to as statistical natural language processing and corpus-based methods.

Simply put, these methods validate hypotheses about different aspects of natural
language—such as, morphology (i.e., the structure of words), syntax (i.e., the structure
of sentences), and semantics (i.e., the structure of meanings)—by collecting evidence
from corpora (for an overview of these methods and their applications see, e.g., Tognini-
Bonelli, 2001; Wilson and McEnery, 1996). The ever-increasing processing power of
computers has made these empiricist approaches a dominant technique for realising goals
set by natural language processing research.

A number of prominent researchers3 have contributed towards establishing the-
oretical frameworks that can be used to explain these corpus-based, data-driven meth-
ods—see, for example, the inventory of the names listed in Jones and Kay (1973) and
Moskovich (1976). In the context of this thesis, however, theoretical articulations by Zel-
lig Harris (1909–1992) are relied upon, namely, Harris’s (1954) distributional hypothesis
and his idea of sublanguages (see, e.g., Harris, 1968, p. 154). As it is best described by
Nevin (2002, Foreword, italics are added):

The consequence of Harris’s theories is that the work of linguistic ana-
lysis can be carried out only in respect to co-occurrence relations in the data
of language—what had come to be called distributional analysis.

Harris’s (1954) distributional hypothesis is often employed to justify a contem-
porary research trend in computational semantics that characterises itself by the name
distributional semantics. As it is described in Chapter 2, distributional semantic meth-
ods use a data-driven approach for modelling and interpreting the meanings of linguistic
entities such as words, phrases, and sentences. In these methods, the meanings of these
entities are a function of their usage in language corpora.

1In research literature, terms such as natural language processing and human language technology are
often used interchangeably. The aim here is to contrast the objectives of these related areas of research.
Also, it is worth mentioning that these research topics are reciprocal in their relationships, that is, research
findings in one area are often employed to support claims or stimulate activities in the other. The term
computational linguistics, perhaps, is the best representative of the aggregation of these research topics.

2In the sense that knowledge is elucidated upon ‘sense experience’ (Markie, 2015).
3Conceivably, of an equal importance.
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Compared to the distributional hypothesis, Harris’s idea of sublanguages is, per-
haps, understated. Similar to the notion of substructure in mathematics, Harris argued that
a certain subset of sentences in a general natural language can form a sublanguage if and
only if it ‘is closed under some operations’ of the general natural language (the closure
property):

A subset of the sentences of a language forms a sublanguage of that lan-
guage if it is closed under some operations of the language: e.g., if when two
members of a subset are operated on, as by and or because, the resultant is
also a member of that subset (Harris, 1998, p. 34).

According to Harris, in a sublanguage, information is expressed by the repeated use of
limited sentence types and word classes. Therefore, once these types and classes are
determined from an analysis of sample documents, they can be used to build a structure
for the information that will be extracted from the analysis of new sample texts. Despite
shortcomings—for example, as stated by Kittredge and Lehrberger (1982), the lack of an
adequate definition—and harsh and contradictory critics,1 Harris’s (1968) sublanguages
idea provides a theoretical basis for the corpus-based processing of (domain-specific)
natural language texts. The notion of sublanguages, particularly, has been employed to
justify the generalisation of findings from a limited number of observations in a reference
corpus to the unseen and unlimited text data that is not the reference corpus.2

Since then, Harris’s perspective has influenced a substantial amount of research
on the automatic analysis of language. Notably, Harris’s doctoral student Naomi Sager
perfected and applied the idea of sublanguages to real-world applications (see, e.g., Sager,
1975). The influence of the idea of sublanguages can be further traced in the work of
Sager’s collaborators such as Carol Friedman, Ralph Grishman, and her doctoral student
Jerry Hobbs (e.g., see chapters of Grishman and Kittredge, 2014). Through the series
of DARPA’s founded Message Understanding Conferences,3 the idea of sublanguages
eventually emerged as today’s modern information extraction technology (see Hobbs and
Riloff, 2010, for an overview of the state of the art in information extraction).

1Compare, for example, reviews by Wheeler (1983) and Nevin (1984): Wheeler concluded that

The work of Harris does not help us with semantics, it is not mathematics, and it comes
late to the problems of syntax (Wheeler, 1983, italics added).

Nevin (1984), however, suggested that sublanguages ‘are essential to an understanding of semantics of
natural language’.

2As repeatedly stated throughout this thesis, Harris is neither the first nor the only linguist who promotes
the structuralist perspective of language through the functional distributional analysis of words. Similar
philosophical perspectives are presented in the work of Jost Trier (1894–1970). In many respects, the
notion of word (semantic) fields as Trier (1934) put forward is similar to Harris’s sublanguages (perhaps,
only a terminological difference. For example, compare this section with explanations given in Gliozzo and
Strapparava, 2009). See also Chapter 2.

3See http://www-nlpir.nist.gov/related_projects/muc/.

http://www-nlpir.nist.gov/related_projects/muc/
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The use of this sublanguages idea is not limited to information extraction. Lan-
guages that are used in specialised communicative contexts (which from now on will be
called specialised languages) and, respectively, the corpora that represent them (which
following the suggested guidelines by Sinclair (1996), will be called special corpora or
domain-specific corpora) are the most definite examples of sublanguages (see, e.g., the re-
cent study in Temnikova et al., 2014). For example, as stated by Harris (2002), in order to
reflect the information’s structure in a specialised knowledge domain, a special language
(e.g., the language of science writing) conforms not only to particular structures—for
instance, syntactic and discourse structure—but also uses a specialised vocabulary.1

As discussed in Section 1.1, the entries of this specialised vocabulary (also known
as a terminological resource) are often called terms and have been the subject of study in
the discipline of terminology. Whereas traditional terminology investigated terms as self-
subsisting linguistic entities, independent of their usage in text, the idea of sublanguages
has encouraged the study of terms in context, as stated by Pearson (1998).2 Disregard-
ing the theoretical motivations, special corpora and terminological resources have been a
vibrant topic in the broad domain of natural language processing and, in particular, the
emerging multi disciplinary research field of computational terminology.

Accordingly, in this thesis, among research topics in computational terminology,
the application of corpus-based methods for extracting co-hyponym terms is revisited us-
ing the aforementioned theoretical framework of Harris’s distributional hypothesis and
sublanguages and the mathematical framework of real normed vector spaces. The pro-
posed method is then evaluated in the systematic way that is encouraged by advances in
distributional semantics.

1.4 Research Questions
To investigate the hypothesis proposed in this thesis—that is, co-hyponym terms share
similar distirbutional properties that can be employed to organise a specialised vocabu-
lary—a number of research questions must be addressed. The first and foremost ques-
tion—similar to other applications of distributional methods—is:

• What kind of co-occurrence relationships among relationships must be collected to
form a suitable model to characterise the targeted structure?

As is explained in Chapter 2, previous research in distributional semantics suggests that
a paradigmatic relationship, such as the one targeted in this thesis, can be distinguished
by collecting co-occurrence frequencies from small windows of text in the vicinity of
candidate terms. This knowledge results in another research question:

1The notion of sublanguages can be approached from other perspectives, for example, see the short
note and references in Karlgren (1993).

2Please note that the study of terms in context has been suggested by several other motivations and
theories (e.g., see Faber and L’Homme, 2014).
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• What is the best configuration for this window of text?

The question above can be broken down into several sub-research questions. How-
ever, as explained in Chapter 2 and stated in the previous research (e.g., see Baroni and
Lenci, 2010; Sahlgren, 2008), at least three questions can be asked:1

RQ 1.1 In which direction, regarding the position of the candidate terms, must this win-
dow of text be stretched?

1. only to the left side of a candidate term to collect the co-occurrences of the candid-
ate term with preceding words;

2. only to the right side to collect co-occurrences with the succeeding words; or
3. around the candidate term—that is, in both left and right directions?

RQ 1.2 What is the best size for this window of text—for example, one or two tokens, or
bigger sizes, such as six or seven?

RQ 1.3 Is the order of words in this window of text important; and, does encoding the
sequential order of words improve the discriminatory power of models?

After collecting the co-occurrences, several other questions arise regarding the use
of the suggested similarity-based reasoning framework:

RQ 2.1 What kind of similarity measure performs better?

RQ 2.2 What is the role of neighbourhood-size selection—that is, the value of k in the
memory-based learning framework?

Another question can be asked with respect to the size of corpus, namely:

RQ 3 Is the size of the corpus used for collecting co-occurrences important? Is bigger,
better?

Last but not least:

RQ 4 Are the obtained results consistent across concept-categories?

Apart from the questions listed above, a major research concern that is investigated
in this study deals with the curse of dimensionality and the design of scalable methods for
the construction of vector space models. Whereas a technique such as truncated singu-
lar value decomposition is mathematically well-defined, its application is limited by the
resource required for its computation, particularly when dealing with big text data. In
contrast, the alternative scalable technique named random indexing lacks adequate math-
ematical justifications. In this thesis, this argument is formulated by

RQ 5 What are the mathematical justifications of random indexing in particular, and in
general, incremental methods of vector spaces construction?

The aforementioned research questions result in the scientific contributions that are de-
scribed in the next section.

1See additional questions in Chapter 6.
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1.5 Summary of Contributions
Based on the principles of distributional semantics, a method for identifying co-hyponym
terms in a terminological resource is proposed. The association of terms to a category of
concepts, hence, the co-hyponymy relationship, is modelled as a paradigmatic relation-
ship in a vector space model. The construction of this model is carried out automatically
and at a reduced dimensionality using an incremental, thus, scalable methodology. Us-
ing minimal supervision and given a small set of examples from the targeted category of
concepts, the association of terms to the concept category are computed using an example-
based k-nearest neighbour classifier (see Chapter 5).

The methodology is then evaluated in the systematic way that is encouraged by
advances in distributional semantics. In order to answer each of the questions asked in the
previous section, several experiments are designed and performed. The outcome of these
experiments confirms the validity of the proposed hypothesis and method. Each set of
experiments targets answering a set of questions that are asked above (i.e., Sections 5.4.1
to 5.4.4 in Chapter 5). In turn, in Section 5.5, the observations from these experiments
are discussed and a summary of the findings is provided. Based on these observations, in
Chapter 6 a set of guidelines that can be used in similar tasks is proposed.

The random indexing technique is studied and the method’s incremental proced-
ure is explained mathematically. This study provides a theoretical guideline for setting
the method’s parameters which has not been previously proposed. To support the theor-
etical findings, the results from a set of experiments are reported. Using the proposed
delineation, the random indexing method is generalised and a novel technique called
random Manhattan integer indexing is proposed. This method can be employed for
the incremental construction of `1-normed term-spaces at a reduced dimensionality (see
Chapter 4). The method, therefore, can be used to improve the performance of distri-
butional semantic models when similarities between vectors are measured using the city
block (or, the Manhattan) distance.

The contributions listed above are discussed further in Section 6.1.

1.6 Thesis Structure
The remainder of this thesis is organised in three parts: Background II, Core Research III,
and Epilogue IV:

The Background II

Chapter 2 is a practical guide that walks the reader through the basics of distributional
semantic methods: how they work and how they can be expressed—or formalised—in
computers. More precisely, as suggested in Section 1.4, the vector space mathematics will
be described and employed. In this framework, the major processes are explained, from
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the construction of a model through the distillation of results. The reader who is familiar
with these concepts can thus safely skip this chapter. Chapter 3 introduces computational
terminology and reviews methods of term extraction and classification. In doing so, the
common mechanism of term extraction techniques are discussed using the jargon that is
introduced in Chapter 2.

Part III: Core Research

Chapter 4 introduces random projection techniques and their applications in natural lan-
guage processing. In this chapter, the random indexing technique is revisited and justified
mathematically. This justification is employed to provide a set of guidelines for setting
the method’s parameters. A novel technique called random Manhattan indexing, and its
enhanced version called random Manhattan integer indexing, are then introduced. The
discussions in this chapter are accompanied by a series of experiments to support the
theoretical discussions.

The main methodology for identifying and scoring co-hyponym terms are then
introduced and evaluated in Chapter 5. After introducing the methodology, the evaluation
framework is laid out. The section in the remainder of this chapter, targets a particular
set of research questions that are proposed earlier. The discussions in this chapter are
connected to the explanations in the previous chapters; hence, the reader can start with
this chapter and follow the provided pointers for relevant elaboration in other parts of the
document. In addition, results from the experiments are connected to the original research
questions described in this chapter.

Part IV: Epilogue

Chapter 6 concludes this thesis by providing a summary of findings. The lessons learned
are discussed and additional questions that are faced during this study are presented as
possible future research.
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Background
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Chapter 2

Distributional Semantics and
Vector Space Models

Distributional approaches to semantics interpret the meanings of linguistic entities by
investigating their distributional similarities in corpora. These empiricist corpus-based
methods are often explained using Harris’s (1954) distributional hypothesis. A vector
space is an algebraic structure that can be employed to represent such distributional simil-
arities. This representation of the distributional properties of linguistic entities generates
mathematically well-defined models known as vector space models of semantics. In a
vector space model, a distance formula measures semantic similarities between entities.

This chapter provides an overview of the distributional approaches to semantics.
Section 2.1 provides a brief overview of distributional semantic models and the underly-
ing distributional hypothesis. Section 2.2 introduces vector space models and provides
mathematical preliminaries. The key processes for the discovery of meaning—that is, the
steps from the construction of a vector space model to similarity measurements—are de-
scribed in Section 2.3. In Section 2.4, the discussions are bound to the statistical learning
theory. Finally, Section 2.5 concludes this chapter.

21
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2.1 Distributional Semantics: Introduction
In order to provide a solution to the problems require a minimum level of text understand-
ing, distributional semantics is a term that is often used to characterise a set of methods
that rely on similarity-based reasoning frameworks. Distributional semantics embraces
a number of approaches that employ similarity-based reasoning in an attempt to provide
solutions to problems that require a minimum level of text understanding. Disregarding
of the type of task and the way similarity-based reasoning is implemented, these methods
aim to capture meanings of linguistic entities (e.g., words and phrases) from their usage
in corpora. In distributional semantic models, therefore, meaning is a function of the
distribution of linguistic entities in a given corpus.

Distributional semantics is motivated by the foundation of structural linguistics
and the distributional hypothesis. The distributional hypothesis, which is often attributed
to Harris (1954), presumes a correlation between distributional similarities of linguistic
structures and their function in language (e.g., their syntactic role, meanings, and so on).
Accordingly, distributional semantic methods suggest that the meanings of linguistic en-
tities are established by the context in which these linguistic entities appear and their
relationship to one another. For example, these methods suggest that the way words are
distributed in text and co-occur with other linguistic expressions determines their mean-
ing. Consequently, distributional semantics can be viewed as a statistical investigation
of the co-occurrences of linguistic entities to capture their semantics from corpora and
linguistic data.

Distributional semantics thus provides us with an empiricist and quantitative model
of meaning in natural languages that is context-dependent. Compared to distributional se-
mantics—on the other side of the spectrum of the methods that study semantics—formal
semantic methods are motivated by a rationalist approach (e.g, see Partee, 2011). In
these methods, the observation of language data is considered to be insufficient for gain-
ing insight into the nature of language.1 Hence, these methods rely on a priori knowledge
that is often expressed in mathematical logic, for example, using the lambda calculus
and predicate logic expressions (Blackburn and Bos, 2005). More importantly, compared
to a distributional model that exploits an inductive similarity-based reasoning, formal se-
mantic techniques rely on deductive inference.2 Formal semantic models provide compel-
ling tools and interesting model-theoretic methods to distil meaning from text. However,
these methods can be used only after text is converted into logical expressions and a priori

1Put simply, rationalist approach sees the language as an innate object, an inherited capability (for a
concise comparison see Manning and Schütze, 1999, chap. 1). In contemporary literature, these methods
often attributed to Noam Chomsky, who collaborated with Harris as a doctoral student. Contemplating on
this matter—although, out of the context of this thesis—will lead to questions such as can we think without
language?, or do we think independently of language?

2As stated by Kamp (2002), although these methods are often studied by different communities, they
can act as complementary tools for treating different aspects of the meanings in language and, thus, the
problem of machine’s understating of natural languages.
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model of knowledge domain exists, which are a barrier to their use.
Table 2.1 lists several hypotheses that are embraced by the term distributional se-

mantics. Despite the fact distributional semantics correlates differences in the meanings
of linguistic entities to the differences in their distributional properties, it does not specify
the variety of distributional information that should be taken into account. Moreover, the
general idea of distributional semantics does not specify the type of meaning connotation
that is attached to distributional differences. In order to establish a model that ties dis-
tributional similarity to meaning, therefore, two basic questions must be answered (see
Sahlgren, 2006, chap. 3; Lenci, 2008; Baroni and Evert, 2009; Turney and Pantel, 2010):

• Which distributional properties of entities should be taken into account?
• How should different kinds of distributional properties be interpreted?

Different choices of distributional properties and their interpretation correspond to dif-
ferent kinds of models that capture different types of semantic similarities. Finding the
appropriate answers for the above questions in a number of semantic computing tasks has
formed a major empirical research theme known as distributional semantics.

2.1.1 Why Does Distributional Semantics Work?

In order to answer the question why distributional semantics works, I would like to begin
with structuralism, an intellectual movement in the 1950s.1 The essence of structural-
ism is to interpret human culture as a system of interconnected signs within a framework
known as semiotics (see Chandler, 2007, for an introduction to the key concepts of semiot-
ics). It was, perhaps, under the influence of the structuralism movement that Harris made
his distributional structure proposal in order to justify the use of statistical techniques for
natural language processing.2 Particularly, Harris (1954) stated that

the meaning of entities, and the meaning of grammatical relations among
them, is related to the restriction of combinations of these entities relative to
other entities.

With a mathematical mindset, Harris elegantly restored the ideas dating back to
linguists such as Ferdinand de Saussure (1857-1913). In this school of thought (i.e., struc-
turalism), language is identified as an environment of interconnected elements and as a
functional system. In simple terms, the elements of language are defined at different levels
of abstraction and granularity and connected to each other through various relations. For

1Readers, who wish to contemplate the (paradoxical) question asked here, are also invited to seek for
answers in light of the art of science as explained by Dunbar (1996).

2For example, see reports from the transformations and discourse analysis project (http://www.
cs.nyu.edu/cs/projects/lsp/pubs/tdap.html), which includes the development of the first Eng-
lish parsing program. See also Section 1.3 of the first chapter of this thesis.

http://www.cs.nyu.edu/cs/projects/lsp/pubs/tdap.html
http://www.cs.nyu.edu/cs/projects/lsp/pubs/tdap.html
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Reference Articulation

Harris (1954) difference of meaning correlates with difference of distribution

Firth (1957) you shall know a word by the company it keeps

Rubenstein and
Goodenough (1965)

words which are similar in meaning occur in similar contexts

Cruse (1986) the semantic properties of a lexical item are fully reflected in appro-
priate aspects of the relations it contracts with actual and potential
contexts

Miller and Charles
(1991, cited in
(Charles, 2000))

the semantic similarity of two words is a critical function of their
interchangeability, without a loss of plausibility

Morris and Hirst
(1991)

word meanings do not exist in isolation. Each word must be inter-
preted in its context

Schütze and Pedersen
(1995)

words with similar meanings will occur with similar neighbours if
enough text material is available

Hanks (1996) the semantics of a verb are determined by the totality of its com-
plementation patterns

Lund and Burgess
(1996)

word meanings as a function of keeping track of how words are
used in context

Landauer and Dumais
(1997)

a representation that captures much of how words are used in nat-
ural context will capture much of what we mean by meaning

Lin (1997) the similarity between A and B, sim(A, B), is a function of their
commonality and differences

Lin and Pantel (2001) if two (dependency) paths tend to occur in similar contexts, the
meanings of the paths tend to be similar

Pantel (2005) words that occur in the same contexts tend to have similar meanings

Sahlgren (2006) words with similar distributional properties have similar semantic
properties

Kilgarriff (2006) word senses are abstractions from the data

Lenci (2008) the degree of semantic similarity between two linguistic expres-
sions A and B is a function of the similarity of the linguistic con-
texts in which A and B can appear

Sinclair et al. (2004,
cited in (Stubbs,
2009))

there is a relation “between statistically defined units of lexis and
postulated units of meaning”

Table 2.1: Various articulations of the distributional hypothesis
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a wise man loved

sensible woman thought

boy played

laughed

Figure 2.1: An illustration of syntagmatic and paradigmatic relations between words: the dotted
lines show paradigmatic relations while solid lines represent syntagmatic relations.

instance, one may abstract language at morphological and phonemic levels, where words,
morphemes, and phonemes can be considered as the building elements of language. The
proposed relative perception in structuralism, then, allows elements of language to be
identified by their relations to each other and not by their perceivable specification.

Structuralists apply the same fundamentals as stated above to lexical semantics.
Lexical semantics is the study of the meaning of lexical units (see Paradis, 2012). Ac-
cording to structuralists, the meanings of lexical units (e.g., words) are not substantial and
self-subsisting, but a function of relations between them. Structuralists distinguish two
types of relations between words: syntagmatic and paradigmatic. Furthermore, they as-
sume that it is harmonious combinations of these paradigmatic and syntagmatic relations
that convey meaning. Given this perspective, distributional semantic methods that model
the meaning of lexical units identify significant patterns in this system of interconnected
syntagmatic and paradigmatic relationships.

There is a syntagmatic relation between two words if they co-occur more fre-
quently than expected by chance and if they have different grammatical roles in the sen-
tences in which they occur. For instance, a semantic relation in the form of selectional
restrictions between a verb and its arguments—such as the relation between love and man
in the sentence a wise man loved—is an example of a syntagmatic relation. In contrast,
the relationship between two words is paradigmatic if they can substitute one another in
a sentence without affecting the grammatical acceptability of the sentence. For instance,
for the given sentences a wise man loved and a sensible woman thought, the pair of words
man and woman, sensible and wise, as well as loved and thought have a paradigmatic
relationship. Paradigmatic relations may be contrastive associations, in which a group
of words might constitute a paradigm. Synonymy and antonymy are examples of such
paradigmatic relations. Figure 2.1 provides an illustration of syntagmatic and paradig-
matic relations.

As stated by Lenci (2008) and Sahlgren (2008), a distributional semantic model
that counts the co-occurrence of words captures a syntagmatic relationship between them.
In this category of models, the co-occurring words in a window of text—such as a verse
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of a sentence, a sentence, a paragraph, etc.—define the context in which the relationship,
thus the meaning, of words are induced. Models that extract multi-word expressions or
those that specify syntactic or thematic relations between words are familiar examples in
this category of distributional semantic models. In these models, the size of the region in
which the co-occurrence frequencies are collected is an essential context parameter to be
decided.

In contrast, if a distributional model counts the frequency of shared neighbours
between words, then it captures a paradigmatic relation. In this category of models,
words—or, in general linguistic entities—that appear surrounding a target word in text
units such as a window of text, sentence, and so on, define the context in which the
meaning/relationship of these entities are induced. Models that detect synonymy rela-
tions or those that associate words to ‘semantic categories’—for example, the proposed
co-hyponymy identification task as well as the named entity recognition task that organ-
ises proper nouns into categories of persons, organisations, etc.—are familiar examples
of these models. In this category of models, in addition to the size of text unit in which
the co-occurrences are counted, the position of target entities (e.g., words) in relation to
the context elements and the direction in which the neighbourhood extends are additional
parameters that must be decided.

Let us now return to the question asked in the beginning: why do distributional se-
mantic methods work? As described above, one of the major outcomes of conceptualising
language as a functional system is that it can be studied empirically using the scientific
method. As such, the question stated above is the point in which one of the limits of the
scientific method is met. To understand this limitation, one must carefully distinguish
between the three elements of fact (or, observation), hypothesis, and theory in the sci-
entific method. Facts are inherently true;1 in distributional approaches, they are equivalent
to the observations made about linguistic phenomena that are modelled.2 Since it is im-
possible to collect everything that language embraces,3 conclusions are inevitably based
on a number of selected observations. A hypothesis is an educated assumption. This
assumption is made before designing experiments and collecting facts. If a hypothesis
holds against a large number of observations, then the hypothesis is usually formulated as
a theory. The induced theory is then employed to justify answers to a range of questions.

However, a theory can be rejected if new observations suggest this. Some relev-
ant and unseen observations (or, their characteristics) that are important in the process of
making a decision about the truthfulness of a hypothesis can be overlooked;4 in turn, this
can result in controversy.5 Using the scientific method to model language and linguistic

1Although very interesting, let us skip questions such as what is truth? in their philosophical sense (e.g.,
as discussed by Russell, 2014, chap. 3 and 4).

2Note that a number of prominent linguist object this statement.
3Since observations about most (if not all) linguistic phenomena are innumerable and hence it is im-

possible to record everything that is related to them.
4Or, observations can be theory-laden.
5There are well-known examples of this situation in the history of science, such as the Mendel–Fisher
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phenomena is certainly controversial. For the assessment of distributional hypotheses,
given the complexity of natural language as well as its infinite and generative nature, sim-
plifying characteristics of observations and experiments are inevitable. With this prelude,
I suggest that, in fact, there is no definite answer to the question asked earlier: why do
distributional semantic methods work?1

The first answer that seems plausible is that distributional semantics works be-
cause the underlying theoretical framework (i.e., usually the distributional hypothesis) is
sound and effective. As stated above, the success of distributional semantics applied to a
task depends on a number of parameters, most importantly on the appropriate identifica-
tion of linguistic elements and their relations within the problem context. As a result, if
the success stories of distributional semantics are not sufficient to prove the effectiveness
of the distributional hypothesis, they may also be insufficient for rejecting it.2 Situat-
ing this discussion in the broader context that is given by Harris’ sublanguages idea—as
briefly mentioned in Chapter 1—can perhaps open new ways to discuss the question why
do distributional semantic methods work?, asked here.3

By adopting an empiricist approach, the large number of experiments that con-
firm the ability of distributional methods (to address a range of tasks that require a level
of language understanding) can be employed to verify the veracity of the distributional
hypothesis.4 Distributional methods have been successfully applied to information re-
trieval (e.g., Deerwester et al., 1990), semantic memory (e.g., Lund and Burgess, 1996),
and word meaning disambiguation (e.g., Rapp, 2003), among others. These experiments
have shown that contextual similarities can be employed to propose a reliable semantic
model. However, distributional semantic models come with their own limitations and are
still developing. The inability to handle traditional semantic notions such as negation,
scope, quantification, and compositionality are examples of the distributional semantics
limitations. Indeed, a number of these limitations arise from the constraints of similarity-
based reasoning. Currently, these limitations are active research topics. Here, it is worth
pointing out that the distributional hypothesis has not been employed to only justify distri-
butional semantic methods. For example, a large amount of research in speech recognition
and language modelling is based on the promise of the distributional hypothesis—that is,
systemic functional perspective on language (even if it is not mentioned explicitly).

controversy (see Fisher, 1936) as well as the Duhem–Quine problem (see Stanford, 2013) to name a few.
1The short argument given here is discussed (fairly) by Eddington (2008) from a broader perspective

that analyses the relationship between linguistics and the scientific method.
2Here, the notion of success is a source of controversy and ambiguity. While the discussion can

be extended by describing the meaning of success, I assume success is defined by a tangible figure of
merit—whether it is a simple quantitative measure used to evaluate an algorithm (e.g., recall in informa-
tion retrieval tasks), or complex Turing test-like performance measures in more sophisticated tasks involved
man-machine conversation. In fact, the definition of this performance measure (i.e., the definition of suc-
cess in the given context) is an overlooked topic and can lead to flaws in the assessment of a hypothesis or
unrealistic expectations or constitutions from observations in an experiment.

3Perhaps, by formulating and generalising the outcome of experiments more carefully.
4Yet, we do not like to curse one of a few tools that is available to us for analysing natural language.
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Distributional semantics is often praised for the practical method that it offers for
constructing semantic models—that is, building frequency profiles from corpora. De-
veloping a distributional model, therefore, requires minimal supervision; explicit human
judgements are not usually required, and no rules need to be handcrafted. Consequently,
compared to formal computational semantics, the development and maintenance of a
distributional-based model are less time-consuming. More importantly, distributional se-
mantic models equip us with two unique capabilities. As emphasised by Baroni (2013),
distributional semantic models offer a systematic method to approximate degrees of simil-
arity. In this framework, in contrast to formal models, semantic similarity is a quantitative
prediction (e.g., a distance measure in a vector space). Such quantitative measures allow
approximate degrees of similarity to be defined explicitly. This being the case, distribu-
tional models of semantics are capable of expressing semantic relatedness in a continuum
of shades of grey instead of black or white (Baroni, 2013).

Secondly, distributional semantic methods permit meaning to be captured by arbit-
rary, heterogeneous, large-scale sets of symbols: from words in a lexicon to visual objects
and scenes in images or a combination of these. For example, in order to improve a sim-
ilarity measurement between words, Bruni et al. (2012) employ co-occurrence counts of
words with a set of low-level image-based context elements. This is an exciting area of re-
search considering the advances in wearable computing and the increasing availability of
sensory information. As explained later, various techniques, such as random projections,
enable distributional models to easily scale as demand requires. Compared to formal
semantics, these properties make distributional semantic models a more desirable com-
panion for the current paradigm shift in computing from algorithm-centric to data-driven
approaches (e.g., see Zadeh, 2010).

2.1.2 Distributional Semantics and Principles of Interpretation

Distributional profiles and thus distributional semantics can be interpreted in, at least,
two different representation frameworks: the probabilistic and vector space frameworks
(Erk, 2012).1 Distributional information consists of the counts of the co-occurrences of
linguistic elements that can be stored and viewed in a tabular data format. This tabular
data can be analysed either as a contingency table in a probabilistic modelling framework
or in a vector space framework. These representation frameworks interpret and measure
semantic similarity using different mechanisms.

A probabilistic-based model of distributional semantics employs probability the-
ory and Bayesian mathematics. In this framework, a probabilistic inference indicates
semantic similarity. A probabilistic approach associates linguistic entities with probabil-
ity distributions based on the contexts that they appear in; it also calculates conditional

1For instance, information-theoretic framework (e.g., as suggested by Resnik, 1995) and graph-based
methodology (e.g., as employed in Navigli and Ponzetto, 2012) can be added to the list of representation
frameworks for distributional semantic models.
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Figure 2.2: A mind map of different representation frameworks that can be employed for the
implementation of a distributional semantic model.

and joint probabilities of contexts and elements. Eventually, a parameter estimation tech-
nique signifies semantic similarity. Latent Dirichlet Allocation (LDA) is a well-known
example of a probabilistic approach to distributional semantics (Blei et al., 2003) .

On the other hand, vector space models construct a metric space from the given
distributional profiles. Points in this metric space represent linguistic elements under con-
sideration; a notion of distance between elements is defined and it indicates similarity
between the elements. A 3-dimensional Euclidean space is probably the most intuitive
understanding of such metric space. The vector space models thus results in a “geo-
metrical metaphor” of meaning (Sahlgren, 2006). Landauer and Dumais’s (1997) Latent
Semantic Analysis (LSA) is a well-known example in this category of distributional se-
mantic models.

Figure 2.2 summarises the discussion in this section. Although probability-based
and vector space-based methods propose different conceptualisations of meaning (i.e.,
distributional probability vs. distance metrics), in essence, they are the same (e.g., see
Turtle and Croft, 1992, in the information retrieval context). In both methods, meaning is
derived from event frequencies presented by distributional profiles. However, throughout
this thesis, vector space models and distance metrics are employed to model semantic
similarities. Following many researchers such as Widdows (2004) and Sahlgren (2006), it
can be argued that the vector space models and the geometrical interpretation of the mean-
ing are more intuitive than the probabilistic framework—for example, as put by Widdows
(2004), seeing is believing. However, it is worth mentioning that these representation
frameworks must be seen as complementary—such as the comparison of generative and
discriminative classifiers (e.g., see the arguments in Nallapati, 2004, given in the context
of information retrieval).

Last but not least, while distributional models of semantics can be presented using
representation frameworks other than a vector space, a vector space can also represent
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semantic models other than distributional. For instance, Riordan and Jones (2011) use a
feature-based model of semantics that is represented by a vector space. While distribu-
tional models are induced from statistical regularities of entities that appear in particular
contexts (c.f., Section 2.2.2 for further details), feature-based models employ a rationalist
approach and a set of descriptive features to reflect the meanings. As a result, although
feature-based models of semantics can be presented by vector spaces, they are derived
from an entirely different perspective on meaning. Therefore, not all the vector spaces
necessarily implement distributional models of semantics.

The next section reviews basic mathematical definitions and notations that are
used in vector space models.

2.2 Vector Space Models

2.2.1 Vector Space: Mathematical Preliminaries

In mathematics, an algebraic structure is a set together with one or more operations in it.
Vector space is an algebraic structure that consists of a non-empty set and two binary op-
erations that satisfy certain axioms. A vector space extends an algebraic structure called
field. Informally, a field is a set of elements called scalars, or numbers, in addition to
two binary operations, and certain axioms that implement four familiar arithmetic opera-
tions of addition, multiplication, subtraction, and division over the set. The field of real
numbers (R) and the field of complex numbers (C) are well-known examples.

A vector space can be denoted by a tuple(
V, F,+, ·

)
. (2.1)

The set V , whose members are called vectors, is defined over a field F of scalars. For
example, vectors can simply be a subset of a field such as complex numbers (F = C,
V ⊆ C) or real numbers (F = R, V ⊆ R); or they can be an ordered sequence of scalars
of a field such as F = R, V ⊆ Rn. The two binary operations are called vector addition
(V×V 7→ V : (~v, ~u) 7→ ~v+~u) and vector multiplication by scalars (F×V 7→ V : (α,~v) 7→ α·~v
). The system

(
V, F,+, ·

)
is a vector space if, and only if, it satisfies the following axioms:

• The binary operation addition + forms an Abelian group over V . This implies the
requirements of Closure, Associativity, and Commutativity for the binary operation
+ over V , as well as the existence of Identity and Inverse elements in V .

• For the binary operation multiplication by scalars ·, ∀α ∈ F and ~v ∈ V , α ·~v ∈ V . In
addition, if α, β ∈ F and ~u,~v ∈ V , then α·(~u+~v) = α·~u+α·~v and (α+β)·~v = α·~v+β·~v.

Given a vector space V , if ~v1,~v2, · · · ,~vn are any vectors in V , and α1, α2, · · · , αn
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are any set of scalars in F, then

α1~v1 + α2~v2 + · · · + αn~vn (2.2)

is called a linear combination of the vectors. From the axioms, it can be shown that a
linear combination of vectors in V must belong to V . A set that contains all possible
linear combinations of vectors ~v1,~v2, · · · ,~vn is called the span of ~v1,~v2, · · · ,~vn.

A set of vectors~v1,~v2, · · · ,~vn from a vector space V are called linearly independent
if

α1~v1 + α2~v2 + · · · + αn~vn = 0 ⇐⇒ ∀i, αi = 0. (2.3)

If B = {~b1, ~b2, · · · , ~bn} is a set of linearly independent vectors in V , and B spans V , then B is
called a basis of V . Consequently, vectors ~v ∈ V can be presented as a linear combination
of the vectors ~bi ∈ B:

~v = α1~b1 + α2~b2 + · · · + αn~bn. (2.4)

It can be proved that there exists at least one basis B for V . The cardinality of
B is defined as the dimension of V . By limiting the focus to finite-dimensional vector
spaces, the dimension of V is thus the number of vectors in B1. The scalars α1, α2, · · · , αn

in Equation 2.4 are called the coordinates of the vector ~v in that basis. It can be proved
that the representation of a vector ~v in a basis B is unique. The coordinates of elements
of Vn in a basis, subsequently, can be represented as a row or column matrix. Therefore,
a collection of m vectors in Vn can be denoted by a matrix Mm×n, where the rows of M
represent the vectors.

In a vector space, additional structures are defined to quantify relationships between
vectors. The fundamental concepts of length of a vector as well as distance and angle
between vectors are the familiar geometrical interpretation of these structures.

A norm is a unary operation that associates a vector in V with a scalar in F (i.e.,
V 7→ F : (~v) 7→ ‖~v‖) and satisfies the following axioms:

• Positivity, that is, ∀~v ∈ V : ‖~v‖ ≥ 0;
• Definiteness, that is, ‖~v‖ = 0 ⇐⇒ ~v = 0;
• Homogeneity, that is, ∀~v ∈ V and ∀α ∈ F : ‖α~v‖ = |α|‖~v‖;
• Triangle inequality, that is, ∀~u,~v ∈ V : ‖~u + ~v‖ ≤ ‖~u‖ + ‖~v‖.

A vector space that is endowed with a norm is called a normed vector space. The norm
of a vector ~v ∈ V (i.e., ‖~v‖) is geometrically interpreted as the length of ~v. The Euclidean
norm—which is also called the `2 norm—over the field of real numbers (i.e., F = R) is
the most familiar structure that satisfies the axioms listed above:

‖~v‖2 =

√
Σn

i=1v2
i . (2.5)

1From now on, an n-dimensional vector space is denoted by Vn.
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Given the norm’s definition, the distance d(~u,~v) between the two vectors ~u,~v ∈ V
is given by

d(~u,~v) = ‖~u − ~v‖. (2.6)

Given the Euclidean norm definition in Equation 2.5, respectively, the Euclidean dis-
tance—which is also called the `2 distance—between the two vectors ~v and ~u in Vn

overF = R is given by

d2(~u,~v) = ‖~u − ~v‖2 =

√
Σn

i=1(ui − vi)2. (2.7)

In a similar fashion, an inner product space is a vector space that is equipped with
an inner product structure. An inner product 〈, 〉 is a binary operation that associates a pair
of vectors in V to a scalar in F (V × V 7→ F : (~u,~v) 7→ 〈~u,~v〉) and satisfies the following
axioms:

• Positivity, that is, ∀~v ∈ V : 〈~u,~v〉 ≥ 0;
• Definiteness, that is, 〈~v,~v〉 = 0 ⇐⇒ ~v = 0;
• Additivity for first element, that is, ∀~u,~v, ~w ∈ V: 〈~u + ~w,~v〉 = 〈~u,~v〉 + 〈~w,~v〉;
• Homogeneity for first element, that is, ∀~u,~v ∈ V and ∀α ∈ F : 〈α~u,~v〉 = α〈~u,~v〉;
• Conjugate interchange, that is, ∀~u,~v ∈ V : 〈~u,~v〉 = 〈~v, ~u〉.

For F = R and the two vectors ~u = (u1, u2, · · · , un) and ~v = (v1, v2, · · · , vn), a
familiar structure that satisfied the above axioms is given using the standard multiplication
of real numbers:

〈~u,~v〉 = ~u · ~v = u1v1 + · · · + unvn =

n∑
i=1

uivi. (2.8)

A geometric interpretation of the inner product and the norm gives the angle between the
two vectors. In F = R, the angle between the two vectors ~u and ~v—that is θ—is defined
by the cosine inverse function:

θ = arccos
( 〈~u,~v〉
‖~u‖ · ‖~v‖

)
. (2.9)

It is proved that −1 ≤ 〈~u,~v〉
‖~u‖·‖~v‖ ≤ 1 and thus θ is always valid—that is, θ ∈ [0, π].

It is said that the two vectors ~u,~v ∈ V are orthogonal if 〈~u,~v〉 = 0. A basis of Vn is
an orthogonal basis if the vectors in the basis are mutually orthogonal. Moreover, if the
norm of all the vectors in an orthogonal basis is equal to the unit length, then the basis is
called an orthonormal basis. An orthonormal basis of Vn is called the standard basis (i.e.,
S = {~s1, · · · , ~sn}) of Vn if each vector si ∈ S has only one non-zero entry. It is common to
represent Vn by the coordinates of vectors in S , which is proven to be unique.

The given definition for vector space is inherently abstract and can be extended
to a fairly arbitrary set of objects that forms a field. In addition, there are a number of
definitions for the binary operations of addition, multiplication, and norm that satisfy the
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proposed axioms in vector spaces. Consequently, alternative structures for comparing
vectors can be defined and used by changing the aforementioned components. In the
context of distributional semantics, however, the employed vector space structures are
usually limited to the subspaces of a finite real space, particularly, a finite Euclidean
space En.

A subset W ⊂ V of a vector space is a subspace of V if

• for each two vectors ~w1 and ~w2 in W, then ~w1 + ~w2 ∈ W;
• for any scalar α ∈ F and ~w ∈ W, then α · ~w ∈ W.

Given a finite positive integer n, the set of all ordered n-tuples ~u = (u1, u2, . . . , un)
of real numbers and the binary operations

(~u + ~v)i := ui + vi (2.10)

and
α · ~u = (αu1, αu2, . . . , αun) (2.11)

that are based on the real numbers’ addition and multiplication form a finite real vector
space, shown by Rn. An Rn that is equipped with a Euclidean norm (see Equation 2.5),
or by analogy with an inner product (Equation 2.8), is called a finite Euclidean space. As
it will be discussed in Section 2.3.4, to compute similarities, Rn can be endowed with a
norm structure other than the Euclidean norm.1

The vector space-based approaches to distributional semantics use the key con-
cepts introduced in this section to model the meanings of linguistic entities. Given n
context elements, each element ~si of the standard basis of a vector space Vn is employed
to express an ith context element. Given Vn, in order to analyse the meaning of a linguistic
entity, it is represented by a vector ~v as a linear combination of ~si and scalars αi, similar
to what is shown in Equation 2.4. In this linear combination, the value of αi is acquired
from the frequency of the co-occurrences of the linguistic entity that ~v represents and the
context element that ~si represents. As a result, the coordinates of ~v show the correlations
between the linguistic entity that ~v represents and the employed context elements in the
model (see Figure 2.3 as an example).

In this framework, a collection of m linguistic entities whose meaning is being
analysed using n context elements builds a subspace of an n-dimensional vector space
consisting of m vectors. To compute similarities between the linguistic entities, this vector
space is endowed by a structure such as inner product or norm. Subsequently, the angles
or distances between vectors indicate the similarities of the linguistic entities that they
represent. As stated earlier, often real numbers denote the magnitudes of the correlations
between the linguistic entities and the context Respectively, the coordinates of vectors

1An elaboration of the discussed topics in this section can be found in William J. Gilbert (2004).



34 Chapter 2. Distributional Semantics and Vector Space Models

can be denoted by a matrix Mm×n of real numbers. Each entry of M, thus, represents the
intensity of the relationship between a context element and an entity.

In order to distil the meanings of linguistic entities, a vector space will be the sub-
ject of several processes. Before introducing these processes in Section 2.3, the discussion
continues with an elaboration of choosing the context elements in vector space models of
distributional semantics.

2.2.2 Vector Space Models in Distributional Semantics

In natural language processing, vector space models (VSMs) are often identified by the
model proposed in Salton et al. (1975). In the context of information retrieval (IR), Salton
et al. employed a VSM to measure similarity between documents and queries. In the
proposed model, natural language text documents, as well as natural language queries, are
represented as vectors in a high-dimensional vector space. In this vector space, vectors
that are close to each other are assumed to be semantically similar, while vectors that are
far apart are semantically distant.

Given n distinct terms t and a number of documents d, in Salton et al.’s (1975)
model, each document di is represented by an n-dimensional real vector

~di = (wi1,wi2...,win)

where wi j is a numeric value that associates the term t j, for 1 < j < n, to the document
di. The numeric association between the term t j and the document di may correspond to a
weighted value, such as the frequency of terms in documents. Alternatively, it can be an
un-weighted value restricted to 0 and 1. For a collection of m documents, a document-by-
term matrix Mm×n denotes the constructed vector space.

A document-by-term VSM can be equipped by the inner product structure to
quantify similarities between documents. Therefore, the similarity between the two doc-
uments that are represented by vectors di and d j can be given by their cosine similarity:

sim(di, d j) =
〈~di, ~d j〉

‖~di‖‖~d j‖
=

∑n
k=1 wikw jk√∑n

k=1 w2
ik

. (2.12)

In the above equation, similar to Equation 2.9 in Section 2.2.1, the numerator is the dot
product of the vectors and the denominator is the multiplication of the Euclidean length
of vectors. The genius of the Salton et al. method is that queries, in a retrieval task,
are treated as pseudo-documents and are represented by vectors too. In a vector space
constructed from a document collection C, the most similar documents to a query q (such
as a keyword) are found by computing sim(q, d) for all the documents d ∈ C (Figure 2.3).

The VSM described above implements a hypothesis known as the bag of words.
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Apple is a delicious fruit.D1

Orange is a colour.D2

Orange is delicious.D3
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Figure 2.3: The VSM proposed by Salton et al. (1975): (b) shows a vector space that is constructed
from the given document collection in (a). Words fruit, delicious, and colour are chosen as the
context elements/terms and represented by the standard basis of the VSM. The vectors’ elements
denote the frequency of the terms in their corresponding documents. As is shown in (b), in this
VSM, D3 is more similar to D1 than D2 (α < β). The given input query Q = f ruit is also
represented by a vector. Q is closer to D1 than to other documents (γ < π

2 ). Figure (c) shows the
document by term matrix denotation of the constructed VSM.

The BoW hypothesis suggests that the relevance of documents can be assessed by count-
ing words that appear in the documents, independent of their order or syntactic usage
patterns. Documents with similar vectors in a document-by-term model, therefore, are
assumed to have the same meaning. However, in order to implement a distributional
hypothesis other than BoW, a VSM can be generalised to sets of entities other than docu-
ments and sets of context elements other than words that appear in documents.

Deerwester et al. (1990) showed that similarity between words can be captured by
transposing the document-by-term matrix into a term-by-document matrix.1 The proposed
model by Deerwester et al. (1990), called latent semantic analysis (LSA), hypothesises
that terms that are semantically similar occur in collections of similar documents. In this
term-by-document model, the cosine similarity of vectors, which represent terms, can be
employed to indicate the semantic relatedness between terms. The same model as the
LSA was introduced much earlier by Jones (1972) (cited in Wilks and Tait, 2005b); the
novelty of the LSA, however, is the use of singular value decomposition (i.e., a matrix fac-
torisation technique) for the arrangement of context elements at a reduced dimensionality
(see Section 2.3.3). As described later in Section 2.3.3, singular value decomposition is a
matrix factorisation technique, which allows irrelevant context elements to be eliminated
from a vector space in order to enhance the similarity measures.

The term-by-document model can be further generalised by replacing documents
with text of an arbitrary length, such as a word, or window of words of a certain size. For
instance, the proposed method in Lund and Burgess (1996) captures the semantic similar-
ity of words using a word-by-word vector space. The resulting word-by-word model takes
the co-occurrences of words as a measure of similarity. Even lexico-syntactic patterns can

1From now on, the terms vector space, context vectors, and context matrix may be used interchangeably.
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Figure 2.4: A vector space model that is constructed from the document collection given in Fig-
ure 2.3. The three documents D1, D2, and D3 are the context elements. Therefore, the basis of the
vector space represents each of them. The vectors represent words/terms, in which the coordinates
of the vectors indicate the co-occurrence relationships between the words/term and documents.
In the given example, cosine similarities between the vectors suggest that delicious is semantic-
ally more related to fruit than to colour (i.e., α < β in Figure 2.4a). Figure 2.4b shows a matrix
denotation of the constructed term-by-document model.

be employed to define context elements. VSMs, thus, can be categorised and studied ac-
cording to the type of context element that they employ and the linguistic entities that
they represent (e.g., as suggested by Turney and Pantel, 2010; Baroni et al., 2010). As
discussed, the type of context elements and the linguistic entities in a model is determined
by the model’s underlying hypothesis and intended application.

2.2.3 Types of Models and Employed Context Elements

Distributional semantic models and the employed context elements for their construction
can be categorised and studied from several overlapping perspectives.

First, these models can be categorised by the type of semantic relationship that
they target—that is, whether they characterise syntagmatic or paradigmatic relations between
the linguistic entities in the model (see also Sahlgren, 2006, chap. 7). As discussed earlier,
in Section 2.1.1, the context elements, thus dimensions of a vector space model that cap-
tures a syntagmatic relation between linguistic entities, show the magnitude of the fre-
quency of the linguistic entities that co-occur in text. For instance, models that are used
to measure lexical semantic relatedness (e.g., as employed in Jurgens et al., 2012) must
capture a syntagmatic relation. However, in a model that captures a paradigmatic relation
between linguistic entities (e.g., a model that discovers the synonym or the hypernym re-
lationship), the context elements show the neighbourhoods that are shared between the
linguistic entities.
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As implied in Baroni et al. (2010), distributional semantic models can be also cat-
egorised according to the approach that they employ to distil co-occurrence frequencies.
A distributional method results in a so-called flat or unstructured model if the process
of collecting co-occurrence frequencies in text is coincident with neglecting linguistic
information such as part-of-speech tags or syntactic relations.

To implement a flat model that collects the co-occurrence frequencies of linguistic
entities—that is, to capture a syntagmatic relationship—the only parameter that needs to
be verified is the size of the text region in which the co-occurrence is regarded. Deer-
wester et al.’s (1990) LSA is an example of a flat model that captures syntagmatic rela-
tions between linguistic entities. In LSA, the text region is of the size of logical docu-
ments. Lund and Burgess (1996) present another example of a flat model that captures
a syntagmatic relation between words, however, it uses a narrow text region (i.e., a text
window of n words for n = 10 in the reported experiment). As a rule of thumb, Sahl-
gren (2006, chap. 9) suggests that a wide text region tends to show a better performance
than narrow text region if syntagmatic relations are approximated; inversely, the use of
narrow text regions for collecting co-occurrences of the neighbourhoods that are shared
between linguistic entities has a better performance than using wide text regions when
paradigmatic relations are approximated.

When a flat model collects the co-occurrence frequencies of the neighbourhoods
that are shared between linguistic entities (i.e., to capture a paradigmatic relationship),
however, the direction in which text region are extended is also important. Text regions
can be stretched (a) only to the left side of a linguistic entity to collect the co-occurrences
of the linguistic entity with its preceding words, (b) only to the right side to collect co-
occurrences with the succeeding words or (c) around the linguistic entity (i.e., in both
left and right directions). If text regions are extended around linguistic entities, then the
position of the linguistic entities in the text region (symmetry) is an additional parameters
that can be changed.

The order of words in the text regions can be also important. To capture the word
order information in a model, the appearance of distinct words in distinct positions in text
regions must be distinguished—for example, by appending additional dimensions to the
model. The words’ order information may be also encapsulated implicitly using n-gram
sequences, or using an additional vector structure—for instance, as suggested in Jones and
Mewhort (2007). Section 5.3.2.3 of Chapter 5 will describe the permutation technique and
justify it mathematically, which will be employed later in this thesis. This method is first
suggested by Sahlgren et al. (2008) for the incorporation of word order information in the
vector space models that are built using the random indexing technique.

Curran (2004, chap. 3) distinguishes flat models by the way that they treat logical
text boundaries such as sentence and paragraph boundaries. The width of text regions may
be fixed irrespective of logical text segment boundaries, or it may be restricted by them.
In the first case, text regions can be expanded to two or more logical text segments. Last
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but not least, words in flat contexts can be presented in their stemmed/lemmatised form
to build stemmed models (as named by Murphy et al., 2012). The reported experimental
results are contradicting with respect to the significance of the inclusion of word order
information as well as lemmatisation in the performance of distributional models (e.g.,
see Bullinaria and Levy, 2012).

Linguistically aware models, which are also called structured models, are the
second category of the models that are proposed in Baroni et al. (2010). In this mod-
els, text regions are first annotated with linguistic information such as part-of-speech tags
or syntactic relations. These linguistic annotations may be captured by the model, or it
may be used to filter a number of co-occurrences. Linguistically aware models are used
based on the intuition that linguistic information provides a stronger cue of semantic sim-
ilarity than flat models. For instance, a window of words with particular part-of-speech
categories, namely nouns, adjectives, and verbs, form the context proposed in Baroni et al.
(2010). Widdows (2003) and Jonnalagadda et al. (2012) are other examples that employ
part-of-speech tags in order to filter co-occurrences.

Pioneered by Grefenstette (1994), a sub-category of linguistically aware models
is defined by the use of syntactic relations. In its simplest form, pairs of dependency rela-
tions Depr and words in text regions Cw (i.e., (Depr,Cw)) form syntactic contexts. In this
model, the co-occurrence frequencies are induced by observing target words/entities that
are in particular Depr relationships with Cw. Syntactic contexts, however, may correspond
to more complex syntactic paths than that described here. Padó and Lapata (2007) argue
that syntactic structure in general and argument structure in particular are close reflec-
tions of the lexical meanings. Several experiments suggest that syntactic-based models
can outperform flat models (e.g., see Erk and Padó, 2008; Jurgens and Stevens, 2010;
Thater et al., 2010; Séaghdha and Korhonen, 2011; Weeds et al., 2014b).

The third group of models, which can be called attribute-value-based models, are
those that collects the co-occurrences of linguistic entities and particular lexico-syntactic
patterns. As mentioned by Baroni et al. (2010), lexico-syntactic patterns are often hand-
crafted and used to capture concept associations, in particular semantic analysis task such
as detecting an entailment relation. For instance, a context may be defined as the presence
of the lexical pattern “X such as Y” between the two entities X and Y in order to indicate
a subordinate relation between them. The main assumption here is that a surface pattern
can be an indication of the presence of semantic relations. An example of this type of
model is suggested by Hartung and Frank (2010).

The types of models that are listed above can be populated by the text kernel
methods that are often used in text classification task. A well-known example is a string
kernel (Lodhi et al., 2002). Models that are built using text kernels can be placed in one of
the categories listed above, depending on the type of the employed kernel. For example,
the resulting model from the application of a string kernel is often a flat model. Using a
tree kernel such as the one proposed in Collins and Duffy (2002), however, results in a
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structured model. Other types of kernels in applications other than text classification are
also conceivable (e.g., see Plank and Moschitti, 2013; Mehdad et al., 2010).

The methods that are employed for collecting co-occurrences are not restricted to
the above-listed categories. A number of recently employed methods for the construction
of distributional semantic models can be categorised as those that use extra-linguistic
context elements. As explained earlier in Section 2.1.1, the notion of the context element
can be extended to sets of objects other than text. For example, in Bruni et al. (2012), low-
level visual features enrich a VSM that measures semantic similarities between words (see
also Bruni et al., 2014). Similar extra-linguistic-based models are employed in Chen
et al. (2012); Roller and Schulte im Walde (2013); Silberer et al. (2013). As suggested
in Anderson et al. (2012), recent research results (e.g., Mostow et al., 2011; Mitchell
et al., 2008) further validate the suitability of extra-linguistic-based models for semantic
modelling from the cognitive point of view.

Other trending usage examples of extra-linguistic context elements, although less
exciting than the above list, are found in the context of the Web. Openly available know-
ledge bases on the Web are rich sources of extra-linguistic information and have served
an increasing number of distributional models. For instance, the explicit semantic ana-
lysis (ESA) technique builds a term-by-document model with extra-linguistic context ele-
ments that are derived from the topical structure of a knowledge base such as Wikipedia
(Gabrilovich and Markovitch, 2007). Reversely, Angeli and Manning (2014) employ a
distributional model and the structured data in open-domain knowledge bases to enable
common sense reasoning, however, for new and unseen entities. In a similar line of re-
search, Gardner et al. (2014) use similarities in a vector space model to enhance reasoning
over knowledge-bases.

The list presented here is endless. Table 2.2 lists a number of distributional mod-
els and their applications. The type of model and the employed method for collecting co-
occurrences is determined by the underlying hypothesis and the task in hand. A new task
implies a new hypothesis, and a new hypothesis often demands a new method for collect-
ing co-occurrences and thus a new type of model. In short, the construction of flat mod-
els is computationally less expensive. However, flat models are often high-dimensional,
which in return may result in a high computational cost for similarity measurement. Such
VSMs may include uninformative, and sometimes irrelevant, context elements, which can
reduce the performance of the model. The use of linguistic information may prevent the
problems mentioned above, however, at the expense of higher computational costs for
VSM construction. However, the use of linguistic information may introduce a level of
noise that is originated from the use of linguistic analysis tools. If the co-occurrences are
filtered by linguistic information or lexico-syntactic patterns, then a larger amounts of text
data might be required to avoid the sparsity in the constructed models. Depending on the
anticipated application for the constructed model, the use of a structured model may not
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Reference Model/Type/Application Domain

Salton et al. (1975) document-by-term model, flat
in information retrieval

Deerwester et al. (1990) term-by-document model, flat
in information retrieval

Lund and Burgess (1996) word-by-word model, flat
a text window of 2 words to the left and right of each target word
as a representational model of semantic memory

Lin (1998a) word-by-word model, linguistically aware
words in syntactic relations with target words
in thesaurus construction, automatic detection of similar words

Lin and Pantel (2001) “path”-by-word, linguistically aware
words in syntactic relations with automatically induced lexico-syntactic
patterns (path)
entitites are constrained paths in dependency tree
in unsupervised inference rules discovery

Kanejiya et al. (2003) word-by-word model, linguistically aware
part of speech (PoS) tagged words, blocks of POS tag information around
a target word
in automated essay scoring

Widdows (2003) word-by-word model, lingustically-aware
words surrounding a target word
target words discriminated by PoS tags
in taxonomy extraction

Padó and Lapata (2007) word-by-word model, linguistically aware
pair of words and dependency relations (anchored paths)
in synonym detection, semantic priming, and sense disambiguation

Gabrilovich and
Markovitch (2007)

term-by-document model, extra-linguistic-based

concepts that are derived from the Wikipedia’ articles
in information retrieval, document similarity, and word relatedness

Baroni et al. (2010) concept-by-attribute-value model, attribute-value-based model
lexico-syntactic patterns using PoS tags and dependency structures
in concept description extraction

Jonnalagadda et al. (2010) word-by-word model, lingusitcally-aware
symmetric text window, PoS tags, encoded words’ order
in named entity recognition

Séaghdha and Korhonen
(2011)

word-by-word model, linguistically aware

context elements derived from dependency structure
in lexical substitution ranking

Hartung and Frank (2011) word-by-attribute model, attribute-value-based
adjectives and nouns with context elements that are induced using an LDA
topic model algorithm
in attribute selection for Adjective-Noun

Lops et al. (2013) term-by-meta-document model, extra-linguistic-based
textual metadata derived from web resources, URLs, HTML meta-tags, so-
cial bookmarks
in tag recommender systems

Anderson et al. (2013) word-by-bag-of-visual-words model, extra-linguistic-based
textual models, verbs and textual windows of fixed size, augmented with
image-based features,
to study the correlation between fMRI-based neural patterns and distribu-
tional semantic measures

Table 2.2: Examples of the employed context elements in vector space models of semantics in
different application domains
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Figure 2.5: Pre-processes to vector space construction
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Figure 2.6: From frequency to meaning: a common four-step process flow in vector space models

necessarily enhance the results (e.g., as reported in Zeng et al., 2014).

2.3 Processes in Vector Space Models

The construction of vector space models of semantics and the task of meaning discovery
involve a set of processes. These processes vary from one application and model type
to another. However, a general pattern of processes can be identified in most of the ap-
plications of VSMs: a three-step pre-process followed by a four-step process (Turney and
Pantel, 2010).

As shown in Figure 2.5, pre-processing starts with a text segmentation and token-
isation process in order to detect linguistically well-defined text boundaries such as words
and sentences from an input text collection (see Palmer, 2010). The successive normal-
isation process may organise similar entities or filter some of them. For example, a simple
normalisation process may convert all characters to lowercase, convert words to their lem-
matised form, or remove some of the tokens such as stop words. Finally, an annotation
process augments text units with additional information. For example, PoS tagging and
syntactic parsing are common annotation processes.

Pre-processed data usually undergoes a four-step process that start with the col-
lection of co-occurrences and the calculation of event frequencies and ends with an inter-
pretation of the calculated similarity measures (Figure 2.6). In the first step, the frequency
of the co-occurrences of linguistic entities and context elements is calculated, and vectors
that represent linguistic entities are built. Non-compulsory processes of weighting and
dimensionality reduction may follow the construction of context vectors. The process is
finished by a method that measures similarity between the constructed vectors. Although
these steps are listed back-to-back, in practice, they may be combined or skipped, as
discussed in the following sections.
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2.3.1 Context Matrix Formation: Collecting Co-Occurrences

Context matrix formation determines numeric associations between linguistic entities and
context elements. In its simplest form, this association is an un-weighted binary value re-
stricted to 0 and 1,1 and it shows the absence or presence of the occurrences of a linguistic
entity with a context element. In a typical term-by-document model, for instance, un-
weighted associations indicate the presence of a term (linguistic entity) in a document
(context element) using value 1. However, the association between linguistic entities and
context elements can be a weighted value. The weighted associations usually correspond
to the frequency of the observation of the co-occurrences of linguistic entities and context
elements. For example, in a term-by-document model, the frequency of the occurrences
of terms in documents can specify a weighted value.

Context matrix is often instated using a sequential scan of input text-data, for
example, by collecting the co-occurrence frequencies in a hash table or database. Altern-
atively, a search engine that keeps an inverted index of context elements and linguistic
entities can be used (Turney and Pantel, 2010). The collected frequencies in tabular
presentations are then converted to an efficient data structure—for example, a dictionary
of keys, list of lists, and so on—that are often used for sparse matrix representation and
manipulation (for an introduction to such data structures see Barrett et al., 1993, chap. 4).
However, further complications may be imposed by the adapted approach for collect-
ing co-occurrence frequencies. For instance, Schütze (1998) employs a method called
context-group discrimination that goes beyond counting the co-occurrence frequencies
and building context vectors at once.

An alternative set of vector space construction methods may not directly count the
co-occurrence events and build a co-occurrence frequency matrix. For example, Gallant
(2000) suggests a three-stage process for the construction of a vector space model. In the
first step, each word, which is assumed to be an irreducible context element that captures
meaning, is assigned to a normalised random vector. In the second step, using an iterative
process similar to the training in Kohonen’s self-organising maps, vectors of adjacent
words are altered in an attempt to preserve and show the neighbourhood relationships.
Finally, the vector space is generated using a combination of these vectors such as their
weighted sum (see also Gallant, 1991, 1994, for more details).

Kanerva et al. (2000) propose a similar method for vector space construction,
which is called Random Indexing (RI). The RI technique constructs a vector space using
a similar a two-step process and in a fashion to Gallant’s (2000) method. In the RI tech-
nique, the process of vector space construction is carried out by the accumulation of a
set of randomly2 generated sparse vectors, called index vectors. Each index vector rep-
resents a context element in the model. To collect the co-occurrences, a linguistic entity
is first assigned to an empty vector that has the same dimension of index vectors. The

1That is, F = {0, 1}, in the given Tuple 2.1.
2See Chapter 4 for an explanation of the meaning of random in this context.
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co-occurrence of a linguistic entity and a context element is then captured by accumulat-
ing the index vector that represents the context element to the vector that represents the
linguistic entity. A similar technique, named TopSig, is proposed by Geva and De Vries
(2011). In these methods, context matrix formation merges with the dimensionality re-
duction step, often to address scalability issues that are associated with processing large
corpora. These methods are studied in depth in Chapter 4.

2.3.2 Weighting

The construction of a context matrix is usually accompanied by a weighting process in or-
der to minimise the effect of the bias that may result from simple co-occurrence counting.
The major sources of bias are frequent context elements and entities. Frequent context
elements that are associated with greater numeric values can dominate those context ele-
ments with smaller numeric values. In a similar way, more frequent linguistic entities
may be associated with a larger number of context elements. Both of the above scenarios
cause bias. The amount and effect of this bias is dependent on the employed method for
the similarity measurement.

The above reasons for weighting can be viewed, by some analogy, in conjunction
with feature selection in machine learning community (e.g., see Turney and Pantel, 2010,
take on the topic).1 First, it is desirable to give higher weights to more discriminative but
less frequent context elements. For example, in an information retrieval (IR) framework
that employs a document-by-term model, using the raw term frequencies (tf) implies the
same significance of terms when measuring the similarity between documents. However,
the term frequency–inverse document frequency (tf-idf) measure can substitute the raw
term frequencies in order to give higher value to more discriminative terms. The tf-idf
measure normalises raw term frequency weights by the inverse document frequency of
terms (idf): tf-idf = tf × idf. The idf of a rare term, which assumes to be a discriminative
context, is high, while the idf of a frequent term is expected low (for more details on tf-idf
weighting in IR context, see Manning et al., 2009, chap. 6).

For types of models other than document-by-term, tf-idf can be replaced by a
measure of association that indicates the strength of relationships between entities and
contexts. As verified in Curran (2004, chap. 4), context elements with stronger correl-
ations to linguistic entities are more informative than contexts with weaker correlations.
A weak association between a context element and a linguistic entity implies their in-
dependence from each other. However, a strong association suggests that changes in a
context element are likely to occur with changes in linguistic entities, thus, the context
element discriminates between the linguistic entities well. For instance, in a term-by-
term model, the point-wise mutual information measure can be replaced by the simple
term co-occurrence counts (see, e.g., Bullinaria and Levy, 2007, for further explanation

1In this context, the weighting process is often called feature scaling.
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and experimental comparison). Subsequently, the calculated associations can be used to
sort the context elements by their importance, and if desirable to filter a number of them.

Second, the weighting process is leveraged by a method often called length norm-
alisation to cancel bias that results from highly frequent linguistic entities. For example,
in an IR document-by-term model, length normalisation corresponds to techniques that
cancel the advantage of long over short documents in retrieval tasks. Long documents
tend to appear with many terms; additionally, long documents are likely to have large
term frequencies (Singhal et al., 1996). In this setting, length normalisation adjusts the
term weights in conformity with the length of documents. The length normalisation, how-
ever, can be widened to any set of linguistic entities. In this generalisation, the frequency
of entities is replaced by the exemplified document length. In line with this reasoning,
highly frequent linguistic entities are likely to appear with more context elements than
less frequent ones. Moreover, the context elements that are occur with highly frequent
entities are probably associated with greater weights.

Among techniques that can be used for length normalisation, unit-length normal-
isation is a common approach. First, the length of a vector—that is, its norm—is com-
puted. Then the collected frequencies for context elements in the vector are divided by the
its computed. For instance, in an `2-normed space, the length of vector~v, which represents

a linguistic entity, is given by ‖~v‖2 =
∑|~v|

i

√
v2

i . To perform the unit length normalisation,
each element vi of ~v (which represents a context element) is divided by ‖~v‖2. Thus, the
element vi

′ of the new normalised vector ~v′ is given by vector ~v′ (i.e., vi
′ = vi

‖~v‖2
). The

impact of unit length normalisation varies from one task to another, and it depends on
a number of additional factors, namely, the size of corpus and the distribution of entities
and context elements such as suggested by Périnet and Hamon (2014b); Gorman and Cur-
ran (2006a), and the employed metric for similarity measurement (see also Clark, 2015).
These two factors are inspected later.

Contrariwise, weighting may be used to introduce intentional bias toward the co-
occurrences of linguistic entities and certain context elements. For example, in a term-
by-term model that counts the co-occurrences of words, Lund and Burgess (1996) assume
that context words in closer vicinity to a target word represent more of its semantics than
distant words. Therefore, the co-occurrence of words are weighted according to their
distance in an inverse relation. For a context window of n words on each side of the
target words, the number of intervening words between the target and context words is
defined as their distance d, and the frequency of occurrences are weighted with respect
to their position in context windows by the magnitude of n − d (Burgess, 2001). By the
same token, Sahlgren et al. (2003) employ the function 21−d for the weighing of a context
window.

Baroni et al. (2007) employ a weighting procedure to encode distributional his-
tories of context words in a term-by-term model. The vectors are weighted using a ratio
of the encountered frequencies of context words. Baroni et al. (2007) suggest that fre-
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quent words tend to co-occur with other words by chance. As a result, more frequent
context words have less informative distributional history than rare context words. The
employed weighting function, therefore, defines the influence of context words in an in-
verse proportion to their frequencies. Mathematically speaking, this method implements
a Laplace smoothing of the collected co-occurrences, which can be also found in Turney
and Littman (2003).

Zhitomirsky-Geffet and Dagan (2009) suggest that semantically similar words are
best described by the contexts that are common between them. Therefore, they employ
weighting to promote such contexts using a three-step bootstrapping process, similar to
the proposed method in Bins and Draper (2001). At first, similarity values between words
are calculated using contexts that are weighted by a mutual information measure. Next,
the common contexts between the obtained set of similar words are promoted by increas-
ing their weights. Yamamoto and Asakura (2010) propose a techniques that is bases on
a similar idea. Finally, the similarities are recomputed using the updated weights. These
methods can be criticised for their computational complexity, which is imposed by repet-
itive calculation of similarity measures, and then finding and sorting the common context
elements. This procedure of weighting is also the fundamental idea behind the learning
process in methods that employ neural networks such as Mikolov et al. (2013); Zeng et al.
(2014); Irsoy and Cardie (2014).1

2.3.3 Dimensionality Reduction

As discussed earlier, in distributional semantics, the distributional properties of
linguistic entities—that is, their co-occurrences with various context elements—are com-
pared to quantify some sort of semantic similarities. When a vector space is used to
represent and analyse these distributional properties, each element of the standard basis
of the vector space—that is, informally, each dimension of the vector space—represents
a context element. Consequently, given n context elements in a model, each linguistic
entity in the model is expressed by an n-dimensional vector.

As the number of linguistic entities that are being modelled in the vector space
increases, the number of context elements that are required to be utilised to capture and
represent their meaning escalates (see the example in Figure 2.7). However, the pro-
portional impact of context elements on semantic similarities lessens when their number
increases. In a high-dimensional model, unless most coordinates of vectors are signi-
ficantly different, it becomes difficult to distinguish semantic similarities. For instance,
under certain broad conditions, it is likely that most entities are located at almost equal
distances from each other (Beyer et al., 1999). Consequently, the proximity of linguistic

1Although, advances in technology, such as the availability of graphics processing unit accelerated
technology, may remove this critique.
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Figure 2.7: Zipfian distribution of the co-occurrences of linguistic entities and context elements:
the distribution of word occurrences in documents a document-by-word model constructed using
the GENIA corpus. In (a), the vocabulary is ranked by the frequency of the words’ occurrences in
the documents. As is shown, most of the words are rare, which results in a long-tailed distribution.
Figure (b) shows the increase in the dimensionality of the model when new documents are.

entities may not express their semantic similarities.
For instance, in a word-by-document model that consists of a large number of

documents, a word appears only in a few documents, and the rest of the documents are
irrelevant to the meaning of the word. Few common documents between words results in
sparsity of the vectors; and the presence of irrelevant documents introduces noise. These
setbacks, which are caused by the high dimensionality of the vectors, are colloquially
known as the curse of dimensionality.

This curse of dimensionality is often explained using power-law distributions of
linguistic entities and context elements—for example, the familiar Zipfian distribution
of words (see Yang, 2013, for further description of power-law distributions). Zipf’s
law states that most words are rare while few words are used frequently. As a result,
irrespective of the input data size, extremely high-dimensional vectors, which are also
sparse—that is, most of the elements of the vectors are zero—represent linguistic entit-
ies.1 For example, Sahlgren (2005) suggests that 99% of the elements of a vector in a
typical word-by-word model are zero (see also Sahlgren, 2006, chap. 4).

A dimensionality reduction process lessens noise and improves the performance
of the similarity measurement by reducing the number of context elements employed

1Turney and Pantel (2010) also suggest that decreasing the sparsity will increase performance. How-
ever, they propose insufficient data as the major cause of the sparsity of vectors. Although insufficient data
can contribute to the sparsity problem, one can hypothesise that the power-law distributions of contexts and
entities play a more significant role in the sparsity of vectors than the data insufficiency. Further analysis is
required to investigate the degree of the dimension expansion of a vector space against its sparsity reduction
when the size of data increases.
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for the construction of a vector space. Dimensionality reduction can be performed by
choosing a subset of context elements and eliminating the rest using a selection process.
To resolve the curse of dimensionality and reduce the sparsity of a vector space, a selection
process chooses a number of context elements that account for the most discriminative
information in the vector space. Consequently, the selection process results in a vector
space of lower dimension constructed by a subset of the original employed contexts.

In its simple form, a selection process filters irrelevant contexts using a heuristic
based on a threshold. After the construction of a vector space and weighting, context ele-
ments that are associated with a weight or a frequency lower than a threshold are omitted
from the vector space. The main assumption is that rare low-frequency context elements
are uninformative and, therefore, do not influence the impending similarity assessments.
For instance, in a text categorisation task that employs a document-by-term model, Yang
and Pedersen (1997) show that statistical weight thresholding can be used reliably to halve
the dimension of the vector space.

In a linguistic-entity-by-word model, a common selection process is to eliminate
context words that belong to a stop word list. A stop word list is a fixed set of high-
frequency words that are clearly not related to the devised semantic similarity applica-
tion. Likewise, stemming and lemmatisation can be employed to reduce inflectional, and
sometimes derivational, forms of words to a common base form. The experiments per-
formed by Bullinaria and Levy (2012) suggest that although these techniques speed up
the similarity computation by reducing the dimension of the vector space, they do not
necessarily enhance the observed results. As described earlier in Section 2.2.3, linguistic
information, such as syntactic relations, can also replace, or be combined with, statistical
measures to select and filter contexts.

A selection process may also be used to rank and filter redundant contexts using
an information theoretic/statistical measure. Information gain, mutual information, and
χ2 test are examples of measures that can be used to check the correlations between con-
text elements. If the correlation between context elements exceeds a certain threshold,
one of them is considered to be redundant and can be eliminated from the list of em-
ployed contexts (see Hall, 1999, chap. 4 for further explanation). However, for a very
high-dimensional vector space model that consists of hundreds of thousands of context
elements, such methods are computationally inefficient.

In a more sophisticated approach, instead of a selection process, heuristics are
used to implement a method of context generalisation. In Périnet and Hamon (2014b),
context elements are generalised by finding synonym and hypernym-hyponym relation-
ships between them. In the proposed, words in a sliding window constitute the context
elements. To reduce dimensionality and sparseness of vectors, the context words are ar-
ranged into sets of words that are in a synonym or hypernym-hyponym relationship. To
achieve the dimensionality reduction, the obtained sets replace context words (see also
Périnet and Hamon, 2014a). Baker and McCallum (1998) uses a similar idea for dimen-
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sionality reduction in a document-by-term model in a text classification task. Baker and
McCallum (1998) state that while this method enhances the result of the classification
task in one corpus, it does not boost the performance in two other corpora. They conclude
that the structure of data (e.g., the diversity of vocabulary, the distribution of words and
the size of documents) plays a significant role in the performance of these methods of
context generalisation.

The process described above leads to an alternative set of dimension reduction
techniques known as transformation methods. A transformation method maps a con-
structed vector space Rn to Rm of lower dimensions—that is, τ : Rn 7→ Rm,m � n. The
vector space at the reduced dimension Rm is the best approximation of the original model
Rn in a sense. The approximation is evaluated by a criterion such as variance, gradient
descent, or distance between context elements. The interpretation of these method using
the distance between context elements in the transposed entity-context model is, perhaps,
more compatible with the suggested mathematical perspective in this thesis. Based on
the employed evaluation criteria, transformations are categorised as either linear, for ex-
ample, truncated singular value decomposition, or nonlinear, for example, self-organising
map.1

Truncated singular value decomposition (SVD) is the most familiar transformation-
based dimensionality reduction technique in the vector space models of semantics (e.g.,
see Deerwester et al., 1990, the latent semantic analysis model (LSA)). Truncated SVD is
a linear transformation method that exploits the Euclidean norm of context elements, or
variance,2 to compare a vector space with its projections in reduced dimensions. Given a
vector space Rn consists of p vectors, which is represented by a matrix Mp×n, the goal is
to construct an m-dimensional vector space, represented by a matrix M′

p×m, m � n, that
preserves most of the variance—thus, the Euclidean distances—in M.

SVD factorises the matrix Mp×n into the product of three matrices: U, a p × p
normalised orthogonal matrix (i.e., UUT = I); Σ = {σ1, σ2, · · · , σn}, a p × n diagonal
matrix; and the transpose of an n × n normalised orthogonal matrix V (i.e., VVT = I):

Mp×n = UΣVT =
( n∑

i=1

uiσivT
i

)
p×n
. (2.13)

The diagonal elements {σi} of Σ are called the singular values of M, and they are ordered
such that σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0.3 For a chosen m, r ≤ m � n, the

1Mathematically speaking, a selection process is a kind of linear transformation process.
2For a matrix Mp×n, the Euclidean norm, also called the Frobenius norm, is defined as ‖M‖F =√∑p
i=1

∑n
j=1 |mi j|

2.
3Z = UΣ are called the principal components of M.
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SVD truncation of M with rank m is given by

M′
p×m = Up×mΣm×mVT

m×m =
( m∑

i=1

uiσivT
i

)
p×m

. (2.14)

The basis elements of M′ are orthogonal because the data is decorrelated in the `2-norm
(i.e., second-order) sense and thus their inner product is zero. According to Eckart and
Young’s (1936) theorem, M′ represents the best approximation of M in Rm, in which
‖M −M′‖ = σm+1 (see Martin and Porter, 2012, for references and elaboration).

The basis elements of the truncated vector space (VSMt) that M′ in Equation 2.14
represents express linear combinations of the correlated contexts in the original vector
space (VSMo) that M in Equation 2.13 represents. Therefore, in contrast to a selection
process, the basis elements of VSMt cannot be directly labelled using the contexts em-
ployed in the VSMo. Instead, they show latent concepts that express weighted combin-
ations of contexts. Latent concepts may capture certain paradigmatic similarities, often
called high-order structures, between the context elements employed in VSMo (see Leo-
pold, 2005, for further mathematical explanation).1

Interpretation of the attached variances to context elements justifies different ap-
plications of truncated SVD. Turney and Pantel (2010) enumerate latent meaning, high-
order co-occurrence, sparsity reduction, and noise reduction and leave the door open
for further innovative applications. Under the assumption that the covariance of context
elements indicates their similarity,2 truncated SVD can be seen as a technique that ex-
ploits the Euclidean norm to measure similarity between context elements. Truncated
SVD groups contexts into latent concepts such that it captures latent meaning and high-
order co-occurrences; consequently, SVD truncation results in a vector space VSMt that
expresses entities in a latent semantic space.

For instance, in the LSA model, a truncated SVD model represents the semantic
relationships between documents using latent concepts that are derived from a document-
by-word model. The latent concepts, also called latent topics, may capture synonymy
relationships between words and enhance similarity measurements (Martin and Berry,
2011).3 Consequently, the introduction of the latent concepts, which are more general
than the contexts employed originally, results in the sparsity reduction. SVD truncation,
however, does not guarantee generation of most suitable combinations of contexts for
an intended application. For instance, in a cross-language information retrieval task per-
formed on Wikipedia articles, Cimiano et al. (2009) report that truncated SVD does not
enhance the obtained results.

1See also Sahlgren (2006, chap. 7) who suggests that the enhancements in TOEFL experiments with
the LSA model are the result of encoding paradigmatic relations between context words using the truncated
SVD.

2That is, the Euclidean distance between context elements in the transposed model.
3This argument can be generalised if synonymy relationship replaces a paradigmatic relationship.
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Dimension reduction by truncated SVD implies that contexts associated with large
variance express discriminative information. By the same token, under the Gaussian as-
sumption of noise, the low variance contexts are supposed to be unimportant and noisy.
Therefore, the truncation of SVD using highest singular values, as suggested in Equation
2.14, can be viewed as a filtering procedure that eliminates noise. The performance of
noise reduction using SVD, however, depends on the distribution of the co-occurrences
of linguistic entities and the context elements. While SVD truncation can be applied to
remove Gaussian noise from data (e.g., white noise from sinusoidal signals), it fails with
noise of a non-Gaussian nature. For instance, observations such as Figure 2.7a indicate
that the co-occurrences of words in documents follow a non-Gaussian distribution (see
also Sichel, 1975). Therefore, the use of SVD truncation for noise reduction is not effect-
ive in models that are based on the co-occurrences of words.

SVD is sensitive to the measurement scales of the context elements being ana-
lysed. Because a truncated SVD model retains linear combinations of the context ele-
ments that maximise the magnitude of variance, it is biased towards context elements that
have larger variation values. If contexts are presented using values of different scales, then
SVD truncation will be in the favour of context elements that are presented in scales of
larger magnitude. Therefore, a scaling process is necessary before performing the SVD
computation (see Jackson, 2004, for further information on methods of scaling).

In dimensionality reduction using the SVD truncation, the degree of dimension
reduction should be decided by choosing a value for m in Equation 2.14. An optimum
value for m is determined by the structure of the underlying data as well as the intended
application. Direct selection of an optimum m, however, remains an open question (Mar-
tin and Berry, 2011). Therefore, the value of m is often found by an exhaustive evaluation.
In order to find the most satisfactory m, a performance measure suitable for the intended
application is defined to compare several values of m. For example, in an information
retrieval task, the estimated precision per m in retrieval tasks decides the best degree of
dimension reduction.

The computation of SVD for dimension reduction entails solving a linear equation
that finds eigenvectors. For a given n-dimensional vector space, direct solution to this
equation, known as the Gram–Schmidt process, is computationally trivial and of O(n2)
complexity. Accordingly, the direct computation of truncated SVD for mapping Rn to Rm,
m � n, demands computational complexity proportional to O(n2m). In practice, the sin-
gular values are approximated using iterative techniques such as the Lanczos method and
its variations that take advantage of the sparseness of vector spaces (see Saad, 2003, chap.
7). In k iterations, the m largest singular values of a vector space are calculated directly
and therefore the computational complexity of the transformation process is decreased
to O(nkm).

Truncated SVD requires the vector space of higher dimension than the targeted
reduced dimension—that is, M in Equation 2.13—to be constructed prior to the process
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of dimension reduction. However, this may not be desirable when dealing with large
corpora. The size of a vector space that is built using a regular method of context mat-
rix formation is a function of the size of the corpus. A regular context matrix forma-
tion associates entities to context elements, often using normalised values induced from
the observed co-occurrence frequencies across the corpus. Such that context matrix be-
comes computationally intractable when the corpus size increases (e.g., Figure 2.7b). In a
term-by-document model, for instance, the dimension of the vector space dim before the
dimensionality reduction process is equal to the number of documents in the corpus |c|;
appending n new documents to the corpus corresponds to an increase in the dimension of
the vector space—that is, dim = |c| + n. This is a non-trivial task when the corpus is big
or its size increases at a sharp rate such as Web-scale information extraction tasks.

In addition to the aforementioned problems, the basis of the vector space with re-
duced dimensionality, which the data is projected onto, is also required to be devised prior
to the projection task. If the structure of the data that is being analysed changes, the basis
of the projected vector space also changes. Therefore, every time data is updated (i.e.,
a new context element or linguistic entity is added to the vector space), SVD should be
recalculated in order to generate a suitable projection. This limitation is also generalised
to dimensionality reduction techniques that are based on matrix factorisation techniques
other than SVD, such as QR and ULV decomposition. Random indexing is an alternative
dimension reduction technique that alleviates these issues.

The random indexing (RI) method, which is first introduced by Kanerva et al.
(2000) for the construction of a word-by-document model and further delineated by Sahl-
gren (e.g., see Sahlgren, 2005, 2006), utilises all the advantages listed above to create a
vector space model of semantics at reduced dimension. Sahlgren (2005) delineates the RI
method in the form of a two-step procedure that consists of the construction of a) index
vectors and b) context vectors. In the first step, each context is assigned to exactly one
index vector ~rck . Sahlgren (2005) indicates that an index vector is a randomly generated
high-dimensional vector, in which most of the elements are set to 0 and only a few to 1
and -1. In the second step, the construction of context vectors, each target entity is as-
signed to a vector of which all elements are zero and that has the same dimension as the
index vectors. For each occurrence of an entity, which is represented by ~vei , in a context,
which is represented by ~rck , the context vector for the entity is accumulated by the index
vector of the context—that is, ~vei = ~vei + ~rck . The result is a vector space model, which is
constructed directly at reduced dimension.

The procedure in the RI technique can be better explained by an example of a
word-by-document model. In the first step of the process, each document in the cor-
pus—that is, a context element—is assigned to an index vector ~rdi of dimension m much
smaller than n. Each word in the corpus is then assigned to an empty context vector
~vew—that is, all the elements of the vector are set to zero—and dimension m. The context
vectors assigned to words can then be updated through a sequential scan of the corpus.
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For each occurrence of a word in a document di, its context vector ~vew is updated such
that ~vew = ~vew + ~vdi . Given n documents and p words in the corpus, instead of a matrix
Mp×n, the RI procedure results in a matrix M′

p×m that represents the vector space model at
reduced dimension by the factor n

m .
The random indexing method, thus, can be used to address a number of issues

that are faced when using SVD truncation. For instance, in RI method, adding new con-
text elements to the model is realised by adding new index vectors, without demanding
a recalculation of the projection. Chapter 4 provides a comprehensive description and
mathematical justification of the RI method. As is shown in Chapter 4, the RI method
belongs to a category of dimensionality reduction techniques that are based on random
projections.

The linear methods, such as SVD truncation and the RI method, have often been
criticised for their inability to capture nonlinear structure of data beyond the `2-norm (or,
the second-order statistics). In contrast to linear techniques that assume the text data
lies on a linear sub-space of a high-dimensional space, a number of dimensionality re-
duction techniques go beyond linearity assumption and explicitly reconstruct the data in
an embedded manifold. These methods, known as nonlinear dimension reduction tech-
niques, are further categorised by their underlying theory (e.g., see Van der Maaten et al.,
2009, for a survey). In the context of natural language processing, Kohonen’s (1990)
self-organising maps is, perhaps, the most familiar example of a nonlinear dimension-
ality reduction technique (see also chapters of Honkela, 1997). Some experiments sug-
gest that nonlinear methods do not necessarily outperform linear techniques, specially on
real-world datasets containing noise or having discontinuous or multiple sub-manifolds
(Huang and Yin, 2012).

While the use of neural networks and non-linear transformations are gaining pop-
ularity in several domains of study in distributional semantics, the study of these methods
is left for another occasion. This section has only scratched the surface of the dimension-
ality reduction techniques that are most commonly applied in the distributional models
of semantics. In the context of distributional models of semantics, dimension reduction
techniques are still maturing with respect to several factors such as their performance, ef-
ficiency and underlying theories, as well as the data and intended applications of models.
Figure 2.8 provides readers with a summary of the discussions in this section.

2.3.4 Similarity Measurement

The computation of vector similarities, which serves as a quantitative approximation of
semantic relatedness between entities, is often the last step of the processes. As discussed
in Section 2.2.1, a vector space model of semantics is endowed with structures called
inner product, norm, and distance that are employed to define similarity measures between
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Figure 2.8: A map of dimensionality reduction techniques. Although not all methods neatly fall
into the provided categorisation, it provides readers with a summary.

vectors. The cosine similarity and the Euclidean distance1 are the familiar examples of
such measures in the En. Given the definition of inner product in En by Equation 2.8 and
vectors ~vi = 〈vi1, vi2, · · · , vin〉 and ~v j =

〈
v j1, v j2, · · · , v jn

〉
, the cosine similarity of ~vi and ~v j

is given by the inner product of vectors when their length is normalised:

cos(~vi,~v j) =
〈~vi,~v j〉

‖~vi‖2‖~v j‖2
=

∑n
k=1 vikv jk√∑n

k=1 v2
ik

∑n
k=1 v2

jk

. (2.15)

Likewise, the Euclidean distance is defined as:

d(~vi,~v j) = ‖~vi − ~v j‖2 =

√√
n∑

k=1

(vik − v jk)2. (2.16)

As indicated by the numerator of Equation 2.15, the cosine similarity calculates the over-
lap between the vectors and thus it is a measure of the shared context elements between
linguistic entities. In contrast, the Euclidean distance conveys the differences between cor-
responding context elements and thus it is a measure of discrepancy between linguistic
entities.

1Also called 2-norm or `2.
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Name Formula

Dice sDice(~vi,~v j) =
2
∑n

k=1 vikv jk∑n
k=1 v2

ik+
∑n

k=1 v2
jk

The harmonic mean sHM(~vi,~v j) = 2
∑n

k=1
vikv jk

vik+v jk

Jaccard sJaccard(~vi,~v j) =
∑n

k=1 vikv jk∑n
k=1 v2

ik+
∑n

k=1 v2
jk−

∑n
k=1 vikv jk

Table 2.3: Examples of similarity measures in the inner product family. In these equations, similar
to the cosine similarity in Equation 2.15, the inner product of vectors in the denominators of the
formulas is normalised using different values. These measures show the commonality between
vectors.

The familiar Euclidean norm in a real vector space Rn can be replaced by other
p-norms, 1 ≤ p < ∞,1 in order to calculate similarity between vectors in `p-normed
spaces—that is, a vector space that is endowed with the `p norm.2 For a given vector ~v in
an `p-normed space, the Euclidean norm ‖~v‖2 in Equation 2.8 is generalised to

‖~v‖p =
( n∑

i=1

|vi|
p
) 1

p
. (2.17)

Hence, the distance between the two vectors ~vi and ~v j in a `p-normed space—also known
as the Minkowski distance—is given by

dp(~vi,~v j) = ‖~vi − ~v j‖p =
p

√√
n∑

k=1

|vik − v jk|
p. (2.18)

Amongst the dp distances, besides the Euclidean distance, the `1 distance, also known as
the Manhattan distance or city block distance, has been employed for semantic similarity
measurement.

As discussed earlier, the collected frequencies of the co-occurrences of linguistic
entities and context elements can be interpreted in mathematical frameworks other than
the vector space model. Therefore, it is common to employ probabilistic and information-

1For 0 < p < 1, the p-norm is called a quasi-norm, as it does not satisfy the triangle inequality in the
definition of a norm. However, `0—that is, p = 0—does not satisfy the homogeneity condition, and it is
thus not a norm. From `0 one can arrive at the definition of the Hamming distance. While Hamming spaces
have been also used for similarity measurement in distributional semantics, their study goes beyond the
scope of this thesis. A comprehensive study on the use of Hamming spaces in distributional semantics can
be found De Vine (2013) and De Vries (2014) (see also Gionis et al., 1999).

2Remember from Section 2.2.1 that En is a Rn that is endowed with the Euclidean norm (i.e., the `2-
norm); it is thus an `2-normed space.
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Name Formula

Bray-Curtis sBC(~vi,~v j) =
∑n

k=1 |vik−v jk |∑n
k=1 vik+v jk

Canberra sCan(~vi,~v j) =
∑n

k=1
|vik−v jk |

|vik |+|v jk |

Gower (see Pavoine et al., 2009, for description) sGower(~vi,~v j) = 1
k

∑n
k=1

|vik−v jk |

wk

Soergel sSoe(~vi,~v j) =
∑n

k=1 |vik−v jk |∑n
k=1 max(vik ,v jk)

Table 2.4: Examples of (dis)similarity measures in the `1 distance family. In the definition given
for sGower, wk indicates the range of the values for the kth element of vectors.

theoretic measures for similarity calculation. Many of these measures satisfy the axioms
listed in the definition of distance (norm)1 and therefore can be categorised in an `p dis-
tance family. From this perspective, a dp distance can be normalised in different ways
to design new distance measures. However, there are many other measures that do not
satisfy the required axioms for a distance metric. An example of this categorisation is
given by Cha (2007).

Cha provides a survey of similarity measures and their properties. He enumerates
dozens of similarity measures and groups them according to their syntactic characteristics
(i.e., the homogeneity of their formulas), the correlation between their generated results in
a clustering task, and the caveats in their implementations. Following his survey, Tables
2.3, 2.4, and 2.5 provide a list of similarity measures analogous to `1, `2, and inner product
formula, respectively (to verify the given definitions, see Deza and Deza, 2006, 2014).
Examples of information-theoretic similarity measures are given in Table 2.6.

Amongst his observations, Cha suggests that the family of inner product measures,
such as cosine, generates results closely related to `2 distance. In addition, the results
generated by the two distance metrics da and db are highly correlated if da = cdb or
da = 1− db. Particularly, in distributional semantics, because of the sparseness of vectors,
a method of smoothing is required to alleviate these problems, which is a major research
problem on its own (e.g., see Chen and Goodman, 1999). For example, in these cases,
one solution is to replace zero with a very small value—that is, the additive smoothing
technique.

There is an extensive body of research on learning distance metrics, with detailed
studies that go beyond the scope of the discussion in this section. In these methods, a
distance metric is altered, often using a weight normalisation mechanism in order to reflect

1See on page 31.
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Name Formula

Clark sClark(~vi,~v j) =

√∑n
k=1

( vik−v jk

vik+v jk

)2

Symmetric χ2 sS ymχ2 (~vi,~v j) =
∑n

k=1
(vik−v jk)2

max(vik ,v jk)

Weighted Euclidean sWE(~vi,~v j) =

√∑n
k=1

(vik−v jk)2

wk

Table 2.5: Examples of (dis)similarity measures in the `2 distance family. In the definition given
for sWE, w j denotes a weighting value.

Name Formula
Bhattacharyya sB(~vi,~v j) = − ln

∑n
k=1
√vikv jk

Hellinger sH(~vi,~v j) =
∑n

k=1 (
√

vik −
√v jk)2

K-Divergence sKD(~vi,~v j) =
∑n

k=1 vik ln( 2vik
vik+v jk

)

Kullback-Leibler sKL(~vi,~v j) =
∑n

k=1 vik ln( vik
v jk

)

Table 2.6: Examples of information theoretic similarity measures adopted in the vector space
models, assuming vectors represent probabilities.

a set of given constraints on similarities (e.g., wk in the definition of sWE
1 in Table 2.5 and

sGower in Table 2.4). The weight normalisation problem is usually modelled as a learning
task in the framework of an optimisation problem. For instance, given constraints in the
form of ‘x is close to y’ for a set of pairs of vectors x and y, Xing et al. (2002) suggest
a method that learns a distance metric. Schultz and Joachims (2004) suggest a similar
technique, however, when the constraints are given in the form of a set of triplets such
as ‘x is closer to y than it is to z’. In the machine learning literature, metric learning is
often studied as a learning scheme for feature weighting (see Kulis, 2013, for survey and
references). These techniques, thus, can be perceived in combination with the preceding
weighting step in which more indicative contexts are assigned to higher weights in order
to increase their impact on the similarity measure. Alternatively, given a known set of
related vectors, it is possible to compare distance metrics in order to choose the most
suitable one.

Bullinaria and Levy (2007) provide a comparison between several similarity meas-
ures. The comparison is carried out by studying the results of four different experiments

1In this context often called the Mahalanobis distance.
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k Experiment

(TOEFL) (Distance) (Synt. Cluster) (Sem. Cluster)

1 Hellinger Kullback-Leibler City Block Kullback-Leibler
2 Bhattacharya City Block Hellinger Hellinger
3 City Block Hellinger Bhattacharya Bhattacharya
4 Kullback-Leibler Bhattacharya Cosine City Block
5 Cosine Cosine Kullback-Leibler Cosine
6 Euclidean Euclidean Euclidean Euclidean

Table 2.7: Performance of similarity measurements with respect to each other in Bullinaria and
Levy’s (2007) experiments; rank 1 shows the best-performing similarity measure.

that employ word-by-word models:

TOEFL : From four given choices, a word is selected that has the closest meaning to a
target word in a dataset consisting of 80 questions.

Distance : Similar to the TOEFL test, but the distance between a pair of semantically
related words (e.g., lettuce and cabbage) is compared with the distances between
10 randomly chosen pairs of words from a set of 200 words in order to assess the
structure of the model at a larger scale than the TOEFL test.

Syntactic Clustering : The distance between a target word’s vector and the centre of a
cluster that represents its syntactic category is measured and the ratio of words that
are closer to their real syntactic category than another is defined as the performance
measure. The test is limited to 100 words from 12 different syntactic categories.

Semantic Clustering : The same test as above, however, for semantic categories. The
performance measure is defined as the ratio of words that are closer to their own se-
mantic category than others. The experiment is limited to 530 words in 53 semantic
categories.

Table 2.7 represents the performance of the similarity measures in the tasks ex-
plained above. The results shown in the table are limited to when vectors are weighted
such that they represent the conditional probabilities p(wc|wt), where wt and wc are the tar-
get and context word, respectively. As is shown in the table, the best performing measure
varies from one experiment to another. While a similarity measure such as city block has
a constant superior performance with respect to measures such as the Euclidean and the
Cosine, this relationship does not hold for other metrics such as the Kullback-Leibler and
Hellinger. An approximate difference between the best and worst performing measures
is shown in Table 2.8. As suggested in Cha (2007), the Kullback-Leibler and Hellinger,
and the Cosine and Euclidean show similar behaviours in Bullinaria and Levy’s (2007)
experiments.
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Experiment

(TOEFL) (Distance) (Synt. Cluster) (Sem. Cluster)

Best ≈ % 75 90 92 71
Worst ≈ % 65 85 82 58

Table 2.8: Approximate values for the best and the worst performances of similarity measurements
in Bullinaria and Levy’s (2007) experiments.

In an earlier experiment similar to Bullinaria and Levy’s (2007) Distance test, Lee
(2001) provides a report of the performance of similarity measures which is analogous to
the result shown in Table 2.7. She also reports that the city block outperforms the cosine,
and the cosine outperforms the Euclidean distance, whereas a weighted Kullback-Leibler
method, called skew divergence, gives the best performance. However, Bullinaria and
Levy (2007) show that the cosine similarity can outperform all the similarity measures
in every one of the above tasks when a suitable weighting process, such as pointwise
mutual information, substitutes the probability weighting. In another experimental setup,
Curran (2004, chap. 4) suggests that the Dice and Jaccard outperform the cosine simil-
arity measure. In an automatic synonym acquisition task, Shimizu et al. (2008) report
that a weighted Euclidean measure, which obtains weights through a supervised learning
method, outperforms all other metrics in their experiment. In their reported experiment,
the cosine and the Jaccard are the next-best-performing measures and are listed above the
Euclidean and, contrary to the above reported-experiments, the city block measure.

In an alternative approach, instead of mere performance comparison, Weeds et al.
(2004) suggest an attributive comparison of similarity measures. In a synonym detection
task, Weeds et al. (2004) compare 10 various similarity measures by investigating the
frequency characteristics of target words and their closest neighbour words given by a
similarity measure. They correlate the frequency of the obtained neighbour words to their
distributional and semantic generality and accordingly classify similarity measures into
three groups. The first group of measures are those that are biased towards selecting
high-frequency, and thus more general, words. The second group of measures are those
that are more sensitive to to low-frequency, thus more specific, words. The third group
consists of those measures that are in favour of with a similar frequency to target words.
In their experiment, the cosine and the skew divergence are categorised in the first group,
whereas the Jaccard and the harmonic mean are classified in the third group. A similar
study of similarity measures in an information retrieval context is given in Jones and
Furnas (1987).

Mathematically speaking, the distribution pattern of entities in a vector space de-
termines the performance of similarity measures. In the absence of a priori knowledge
of the distribution of data, similarity measures are often evaluated empirically. An ap-
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proach, such as that described above or proposed by Lin (1998b), is employed to interpret
similarity measures’ performance and elucidate their differences. With such intuition, as
an example, Lee (1999) suggests that for sparse models, commonality-based similarity
measures—such as the Dice and the cosine—are expected to outperform those that are
based on differences such as the Euclidean distance. In information retrieval, Jones and
Furnas (1987) compare the sensitivity of several similarity measures to within-object and
between-object differences and conclude in favour of the cosine measure.

The literature reviewed unanimously agrees that various similarity measures ex-
hibit different behaviours in different tasks and thus there is no single superior measure
for all applications. In a given application, therefore, the choice of a similarity metric is
likely to affect the quality of the observed result.

2.3.5 Orchestrating the Processes

This section concludes our discussion on the processes in vector space models of se-
mantics by emphasising the importance of a holistic approach to their design and imple-
mentation. As described, the goal of the chain of processes introduced in this section is
to simulate a sense of semantic relatedness between vectors that represent the linguistic
entities being modelled. As is explained, the semantic relatedness is ultimately translated
into the proximity of vectors, which is transpired by a notion of similarity measure. The
efficacy of measures is predominated by the distribution of vectors, which, in turn, is a
function of the answer to the earlier question of ‘what the context elements are’. A change
in context elements results in the transformation of the vectors’ distribution in the model
and thus it is highly likely to cause redesign in the subsequent processes, amongst them
the similarity measurement.

Usually, the use of one specific method in one of the processes introduced in this
section limits the choice of methods that are available to be applied in the remaining pro-
cesses. For instance, the choice of a random projection with Gaussian random matrix
for the dimensionality reduction limits the options for the similarity measurement. Sim-
ilarly, the choice of random indexing limits the options for the weighting process. As
discussed in Chapter 4, using random indexing for collecting co-occurrences results in
a Euclidean vector space model; therefore, the use of similarity measures other than the
`2 distance family cannot be justified, at least mathematically. In other words if for any
reason, the use of norms other than `2 is preferable, then a Gaussian random projection
technique such as random indexing cannot be employed. With the same rationale, using
SVD truncation is not justified when similarities are measured using a metric other than
the `2 distance family.

Moreover, one method can neutralise the advantages of another method. For ex-
ample, normalising the Euclidean distance by the inverse of the variance of contexts in
a vector space model that is induced by SVD truncation has no effect on the obtained
similarities. In the same way, if SVD truncation is used for the dimensionality reduc-
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tion, a weight scaling is recommended as a pre-processing step. Nonetheless to say that
Likewise, a number of similarity measures, such as the familiar Euclidean and cosine
similarity, are equivalent if the vectors are normalised to unit length. In contrast, as the
experiment shows, the right combination of methods in the above processes can enhance
the observed results dramatically.

Last but not least, the suggested cascaded architecture for processes, in which
one process is applied after the other in a pipeline, may not be applicable or desirable in
a real-world application. The suggested arrangement of the processes and the clear-cut
boundaries between them are given solely for clarity in the presentation. The software
architecture of an implemented distributional semantic method may require a complex
sequence of interactions far beyond what is described in this section.

2.4 Classification in Vector Spaces

In a vector space model of semantics (VSM), a variety of machine learning algorithms
can be employed to address a range of classification and clustering problems. A class is
a set of entities that can be identified by characteristics that all its members share. The
classification problem is the task of automatic assignment of entities to classes. However,
if the classes are not known prior to the assignment task, then the task is called clustering.
Clustering thus is the task of grouping entities by their mutual characteristics in such a
way that the members of a group, called a cluster, are more similar to each other than to
the members of other clusters in a sense. The classification task is usually referred to as
supervised learning, whereas the clustering task is known as unsupervised learning.

Familiar examples of such tasks are document classification and clustering. In a
document-by-term model, instead of measuring similarities between a pair of documents,
or a query and a document, the documents are categorised by certain criteria, for instance,
their subject areas. In this example, if the subject areas are known beforehand—for ex-
ample, the subject areas are limited to science and art—the task is called document clas-
sification. However, if the subject areas are not known beforehand, then the task is called
document clustering and it organises the documents, for this given example, into groups
that give a sense of the subject areas. Using different context types, documents can be
classified, instead of by subjects area, by their relatedness, style, theme, sentiment, author
characteristics, etc.

In the combination of a learning technique with a vector space model, the learning
algorithm compares the vectors by its own implemented logic of similarity. In a vector
space model, which interprets the meaning of linguistic entities such as documents using
the geometry of vectors, a class or a cluster refers to a collection of vectors that form
a region. A learning algorithm consequently identifies these regions. This perception
implies the assumption that entities of the same class or cluster form a contiguous region
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and regions of different classes do not overlap.1 Violations of these assumptions are the
main causes of inaccuracy in classification and clustering tasks.2

A classification task—that is, supervised learning—can be formalised by a map-
ping function f . For a vector space V and an output space L, which consists of a finite
set of category labels l, the classification process is given by f : V 7→ L. The mapping
function f is learned by a machine learning algorithm during a process called training.
The training process chooses a function that best estimates the relationship between the
input vectors and the output labels from a given set of instances T ∈ V×L, which is called
the training dataset. If L = R, then the classification task is called regression. For |L| = 2,
the task is called binary classification. If |L| > 2, then the task is called multi-class or
multi-way classification. In a clustering task—that is, unsupervised learning—the T and
L are not presented explicitly. Instead, criteria—such as the cardinality of L, the way
similarities are compared, and a relationship between members of clusters—are given.

These learning algorithms are the subject of vibrant scientific research in a frame-
work known as statistical learning theory. The comprehensive study of these methods,
therefore, requires dedicated research. In this section, however, the surface of topics in
statistical learning theory are scratched and only learning methods that take a geometric
approach to a classification task are introduced. These methods classify data in a normed
space and, thus, are compatible with the interpretation principles of vector space models,
which are introduced earlier in Section 2.2. The methods introduced in this section are
used later in this thesis.

In statistical learning theory, learning procedure is formalised using a mapping
function (V × L)n 7→ F . In this definition, F , which is called the hypothesis space, is a
space of functions fm : V 7→ L, where V and L are the input vector space and the output
label space, respectively. The learning algorithm searches in F for a function that best
approximates the relationship implied between the vectors and the labels by the set of n
samples from (V×L)n. This formalisation is based on two assumptions. First, it is assumed
that the data is being classified, that is, the set of n tuples 〈~v, l〉, are drawn independently
and identically from a fixed but unknown joint probability distribution p(~v, l). Second, in
order to assess the quality of learning, it is assumed that there is a notion of loss or error
that can determine, for a given input vector, the discrepancy between the expected label
and the label predicted by a fm. This is indicated by a Loss function loss : L× L 7→ R. For
a given vector ~v and the expected label l, Loss(l, fm(~v)) gives the error of fm.

By these assumptions, the goal of the learning process is to find a fo ∈ F that
minimises the average error. For f ∈ F , the average error, which is also called the risk of
f R( f )is given by:

R( f ) =

∫
V×L

Loss(l, f (~v))dp(~v, l). (2.19)

1Evidently, it can be also interpreted as a corollary to the distributional hypothesis.
2Alternatively, in a probabilistic framework, classes are interpreted as hidden properties of entities,

often named latent variables.
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However, R( f ) cannot be computed because the probability distribution p(~v, l) is un-
known. The learning problem formalised above can be solved using a variety of ap-
proaches. From one perspective, similar to the proposed taxonomy of the distributional
methods in Section 2.1.2,1 the learning techniques can be categorised into methods that
provide a solution using probability estimation techniques or methods that interpret the
learning problem in a metric space.2 As cited by Jain et al. (2000), however, under certain
assumptions on the probability distributions, the two approaches are equivalent.

In the probability-based category, two major approaches to approximate R( f ) can
be recognised. In the first group of methods, it is assumed that the type of the distribution
of data is known; thus, a probability model with a number of fixed parameters can be used
to estimate p(~v, l). Consequently, the training dataset T is used to estimate the value of
the model’s parameters. For instance, assuming the data has a Gaussian distribution, the
joint probability is estimated using the mean and variance of the data samples in T . The
familiar algorithm in this group is the naïve Bayes classifier.

The second group of probability-based methods, in contrast to the former meth-
ods, do not assume prior knowledge of the type of data distribution. These techniques
estimate p(~v, l) by the observation of the data samples provided in T . In distributional
semantics, the Blei et al.’s (2003) latent Dirichlet allocation for uncovering topic models
is a well-known example of these methods. Both category of methods listed above can
exploit the learned joint distribution in a reverse fashion; that is, given a class label l, they
can synthesise examples of context elements related to l. Hence, the probability-based
methods are often known as generative approaches.

On the other side, one category of learning techniques—often named as discrim-
inative methods—bypasses the probability estimation and approximates R( f ) directly. A
subcategory of these methods adopt a geometric approach in the sense that they refor-
mulate a learning task as the construction of decision boundaries in a metric space. The
support vector machine algorithm and the k-nearest-neighbours technique are the familiar
examples in this category. These methods approximate R( f ) from the training set T using
an induction principle such as empirical risk minimisation (ERM). Given n samples 〈~vi, li〉

in T , the empirical risk of function f over T is given by:

Remp( f ) =
1
n

n∑
i=1

Loss( f (vi), li). (2.20)

It is expected that the function f that has a small empirical risk (i.e., Remp( f )) will also
have a small risk (i.e., R( f )). It is proved that for f of finite complexity, Remp( f ) converges
to R( f ) when n → ∞ (see Evgeniou et al., 1999, for further explanation). Therefore, it is
assumed that the goal of a learning task can be achieved—that is, finding the fo ∈ F that

1See Figure 2.2.
2This inventory can be expanded, for example, by adding information-theoretic-based approaches, etc.
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minimises the risk R( f )—by finding the fo that minimises the empirical risk Remp( f ):

fo = argmin
f∈F

Remp( f ) = argmin
f∈F

(
1
n

n∑
i=1

`( f (vi), li)). (2.21)

Accordingly, Remp( f ) is employed as a quantifiable method for the assessment
of the generalisation ability of fo—that is, it is assumed that if fo has a small Remp( f ),
then it also has a high generalisation ability.1 Whereas research in machine learning
investigates developing algorithms by suggesting induction principles other than ERM,2

and imposing restriction on the complexity of F 3, in this thesis, the scope is limited to the
use of memory-based k-nearest neighbours (k-nn) algorithms. The k-nn algorithm implies
that the fo that determines class labels by taking an average of the class labels of instances
in T that are close to input ~v has the lowest Remp.4

2.4.1 The k-Nearest Neighbours Algorithm

The k-nearest neighbours (k-nn) algorithm is a learning technique that is explained by the
geometry of vectors in space (Cover and Hart, 1967).5 In k-nn, instances of data—that
is, vectors—are classified based on the class of their nearest neighbours. It is a two-step
process: in the first step, the k closest vectors to the data item being classified are located;
in the second step, the class label of the data item is determined using the class label of
these nearest neighbours.

Given a vector space V and a training dataset T ∈ V × L, where L is a finite set
of class labels, it is assumed that there exists a distance function d : V × V → R, such
as that given in Section 2.3.4, that assigns a distance value d(~v,~t) to each pair of vectors
~v ∈ V and ~t ∈ T . In its simplest form, when k = 1, for an input vector ~v ∈ V , T is
searched for the ~t that has the least distance to the ~v and its class label is assigned to
the ~v. This classification task can be formalised by the mapping function nn that returns
corresponding label l ∈ L of vector ~t such that:

nn(~v) = l~t, where ~t = argmin
~y∈T

d(~v, ~y). (2.22)

1Although in real-world applications, this assumption does not hold. If the training dataset is small or
the hypothesis space F is large, then there are many functions that can satisfy Equation 2.21. Under these
conditions, however, using ERM may not necessarily result in a function that has a high generalisation abil-
ity. Under such circumstances, a function fo that shows a high performance during the learning procedure
shows a poor performance when dealing with data samples other than T . This is often called overfitting.

2Which its study goes beyond the scope of this thesis.
3For example, using the assumption that the target function fo is in the form of a linear discriminant

function.
4Also, see Kulkarni and Harman (2011), for further elaboration of statistical learning theory and stim-

ulating questions.
5Perhaps more intuitive than SVM.
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By the same token, the nn(~v) can be generalised to k neighbours. After finding the
k closest instances in T to ~v, that is {t1 · · · tk}, the most straightforward approach—known
as unweighted voting—is to assign the majority class label among the k nearest neighbours
to the data item being classified:

k-nn(~v) = ly, where ly = argmax
l∈L

k∑
i=1

δ(l, f (~ti)), (2.23)

where f (~ti) denotes the class label of ~ti ∈ T , and δ(x, y) is a function that compares the
two class labels x and y, that is:

δ(x, y) =

1 x = y

0 x , y
. (2.24)

However, a distance weighted method can replace the unweighted sum of labels:

k-nn(~v) = ly, where ly = argmax
l∈L

k∑
i

wiδ(l, f (~ti)), (2.25)

where wi is real valued function on the distance between ~v and instances from the training
set. For example, the weight function can be defined as an inverse of the distances between
~v and ~ti ∈ T , that is:

wi =

1 x = y
1

d(~v,~ti)
x , y

. (2.26)

Similarly, as suggested by Daelemans et al. (2009) and Cunningham and Delany (2007),
wi can be defined using an exponential function based on Shepard’s (1987) justification,
that is:

wi = e−αd(~v,~ti)β , (2.27)

where α and β are constant, often α, β = 1, that are used to control the power of expo-
nential decay factor. The k-nn algorithm, thus, can be alternated by adopting different
approaches for assigning class labels through definitions of δ and w.

The k-nn algorithm is known to be a lazy-learning technique, which means that it
does not require a training procedure prior to the classification task. The induction takes
place during run-time and using training data samples that are presented explicitly. The
main computation in the learning and classification task is the scoring of training vectors
against an input vector in order to find the k nearest neighbours. The k-nn, therefore,
is also known as an example-based or case-based learning technique. It is a simple yet
effective method of classification that has been widely used in many applications.

However, the application of k-nn requires selecting the k value where it is depend-
ent on the distribution of the data is being classified, the distribution of training samples,



2.4. Classification in Vector Spaces 65

and the metric that is used to find the nearest neighbours. The value for k is usually se-
lected by a heuristic technique such as cross-validation. In general, larger values of k are
believed to reduce the effect of noise; however, this makes class boundaries less distinct.
For small values of k, the k-nn method is also known to be sensitive to the presence of
noisy or irrelevant data (Yang, 1999). In addition, when the number of training instances
increases, the performance of k-nn reduces. However, these limitations have been actively
addressed by a large number of research.

Besides the mathematical account given above, based on the application’s context,
there are several interpretations of the k-nn algorithm. In its simplest form, k-nn can be
seen as a ranking system in which a threshold is used for assigning a class label to an
input vector (e.g., Bustos and Navarro, 2004). In the context of distributional semantics,
however, the k-nn algorithm can be best explained by the substantial research efforts that
are often flagged by the term memory-based language processing (Daelemans and van den
Bosch, 2005)—that is, as described by Daelemans (1999), a union of the two tradition of
analogy-based language models in linguistics, and k-nn learning technique in artificial
intelligence.

As summarised in Daelemans and van den Bosch (2010), k-nn can be seen as a
similarity-based reasoning process in which the learning process is analogous to memor-
ising (i.e., storing) a set of examples. Whereas a number of learning techniques employ a
meta-language such as rules to construct an abstract representation of text data (known as
eager learning methods), k-nn relies directly on the text data to perform the classification
task. Hence, similar to the discussion in Chapter 1, k-nn offers an empiricist method of
classification. Training text samples are, thus, can be kept in their original format with no
alteration. As a result, it can be suggested that:

• the process of classification in k-nn is more intuitive than methods that use an ab-
stract representation of the training data;

• language exceptions and less frequent patterns, which are often ignored by a gener-
alised representation of the training data, can be handled effectively;

• even using a very small set of training examples, k-nn shows a reasonable general-
isation ability.

In the context of this thesis, the k-nn method is employed for two of its particular
characteristics:

• its plausible compatibility with the distributional hypothesis and its intuitive ex-
planation of the classification task;

• its memory-based learning strategy.

As explained above, the former characteristic introduces k-nn as a cognitively plausible
data-driven approach for similarity-based reasoning, whereas the second characteristics
make it exceptionally flexible and suitable for implementing an interactive learning al-
gorithm. No training process is required to develop a model and the examples can be
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added or removed at anytime during the deployment of the method. Hence, the memory-
based learning is a simple yet effective approach for the iterative development of termin-
ological resources—in which the model can be updated as a user annotates and organises
terms. Lastly, the example-based classification method can be easily scaled out, for ex-
ample, with the help of MapReduce programming model—which is an important feature
in big text data analytics.

2.5 Chapter Summary
The discussion in this chapter started by giving an overview of the distributional hypo-
thesis and the vector space models of semantics, which form the theoretical basis for the
proposed methods in this thesis (i.e., Section 2.1). Vector spaces as an algebraic structure
are described in Section 2.2.1; Section 2.2.2 explained how these algebraic structures are
employed to model and interpret distributional properties of linguistic entities in various
contexts in order to capture meanings. In Section 2.2.3, this discussion was accompanied
by a survey of the employed context elements and types of semantic models that have
been employed in different text processing tasks; for example, to address problems in
applications such as information extraction and retrieval.

Processes in vector space models of semantics were a major part of the discussion
in this chapter (i.e., Section 2.3). The steps that are necessary to build a vector space
model are reviewed. These processes, from the vector space construction to the similarity
measurement process, were discussed in detail. Accordingly, Section 2.4 explained the
use of learning techniques in distributional semantic models, in which an emphasis was
put on the methods that employ the geometry of vectors in order to perform a classification
task. Particularly, in Section 2.4.1, the k-nearest neighbours algorithm, which will be
employed later in this thesis, was introduced.



Chapter 3

Computational Terminology:
Term Extraction and Classification

Systematic terminology collection, management, and maintenance are significant tasks
in any application that deals with knowledge. These processes are the subjects of study
in terminology and subsequently computational terminology. Apart from established ap-
plications in knowledge management systems, recent endeavours such as information re-
trieval, machine translation, ontology learning and semantic search have stimulated re-
search in terminology mining. With a focus on term extraction, this chapter provides an
overview of the basic definitions and tasks in computational terminology.

Section 3.1 provides an overview of terminology mining methods. Sections 3.2
describes the common employed mechanism in these methods. Section 3.3, and 3.4 de-
tails the processes of candidate term extraction and scoring, respectively. Section 3.5
touches the subject of term organisation. Section 3.6 briefly discusses the use of machine
learning techniques in terminology mining. Finally, the chapter concludes with a brief
discussion on the evaluation in Section 3.7.

67
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3.1 Introduction to Computational Terminology
Computational terminology embraces a set of algorithms that extract terms from special
corpora and arrange them in domain-specific knowledge structures such as a vocabulary,
thesaurus or ontology. As defined by Sinclair (1996), special corpora contain sublanguage
material. Hence, according to this definition, computational terminology is concerned
with the automatic analysis of languages for special purposes, for example, in order to
facilitate interoperability when communicating specialised knowledge.

Computational terminology inherits its complexities from difficulties in the inter-
pretation of meaning in language. In terminology, these complexities are often summar-
ised by the question what counts as a term? The Oxford Dictionary defines a term as:

a word or phrase used to describe a thing or to express a concept, specially in
a particular kind of language or branch of study (Term[Def. 1], 2014).

According to the International Organisation for Standardisation (ISO), a term is

a verbal designation of a general concept in a specific subject field (ISO 1087-
1, 2000).

As stated by Cabré (2010), linguistically, terms are lexical units and carry a special mean-
ing in particular contexts. A lexical unit is often considered as a lexical form—a single
token, part of a word, a word or a combination of these—that is paired with a single
meaning and serves as the basic element of a language’s vocabulary. Similarly, as sug-
gested by L’Homme (2014), terms are the denomination of items of knowledge—that is,
concepts.

According to their lexical forms, terms are usually classified as simple or complex.
Simple terms consist of one token; complex terms are composed of more than one token
or word. For instance, ‘lexicography’ and ‘multilingual terminology management’ are,
respectively, examples of a simple and a complex term in the domain of computational
linguistics. The extracted lexical units constitute a terminological resource, also known as
terminology: a specialised vocabulary of knowledge in a domain. Terms and their use are
studied in a relatively young discipline, which is also called terminology (Cabré, 2003;
Kageura, 1999):

the field of activity concerned with the collection, description, processing and
presentation of terms (Sager, 1990).

While terminology can be approached from several perspectives—for example, as a branch
of philosophy, sociology, or cognitive science—terminology is dominantly considered a
linguistic and cognitive activity. Modern terminology is therefore pursued within a lin-
guistic framework and as the study of specialised languages—that is, languages for special
purposes (Faber and Rodríguez, 2012).
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(a) The General Theory of Terminology
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(b) Modern Terminology

Figure 3.1: Association of meaning in the GTT compared to recent theories of terminology: the
GTT starts with concepts. Terms are only labels and denote concepts existing a priori. In recent
theories of terminology such as the CTT, however, terms are treated like other linguistic units.
They signify concepts in a communicative context. In the figures above, the dashed lines indicate
the direction in which the meaning of a term is elaborated according to these theories. The indic-
ated communicative context (the dotted triangle in Figure b) can be extended in a number of ways,
for example, by considering the application of terms.

In terminology, the meanings of terms and the process of concept denomination
are studied within the framework of a theory of terminology. As stated in Cabré (2003),
a theory of terminology elaborates the fundamental problem of interpretation of meaning
into a set of questions in which the definition of a terminological unit—and its character-
istics—is often the nucleus, for example:1

• What are the basic units of terminological knowledge?
• How are they defined and acquired?
• Where are they observed?
• How are they recognised and what are their characteristics?

The general theory of terminology (GTT) by Wüster (1974, as cited in Campo
(2013, chap. 2)) is widely recognised as the first theory of terminology. The GTT, which
is also known as traditional terminology, puts concepts first; terms are merely unam-
biguous labels for concepts that exist a priori (Faber and L’Homme, 2014) (Figure 3.1a).
Put simply, in the GTT, knowledge is gained independently of the language, and thus
the usage of terms. As implied by the given definition in ISO 1087-1(2000), the GTT
has been one of the major adopted theories amongst terminologists.2 The sequel to the
GTT can also be found in early computational terminology research (e.g., see Ananiadou,
1994). Consequently, the GTT regards terms and concepts as having mono-referential re-
lationships (Figure 3.2a). The objective behind the GTT, understandably, is to eliminate
ambiguity in natural language in order to improve clarity in technical communication.

In an authoritative institutional organisation3 that promotes or enforces standards,
terms can be made and shared in a top-down manner; hence, the meaning of terms can be

1For a comprehensive list of questions and possible answers, see Cabré (2003).
2Accordingly, Felber (1982) defines terminology as ‘the combined action of groups of subject special-

ists (terminology commissions) of specialised organisations’.
3Here, the organisation can be a scientific discipline, a technical domain, a company, etc., that requires

a specialised language for effective communication.
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Concept
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· · ·

(a) One-to-One Relation

Concept

Term Term · · ·

(b) Synonymous Relation

Term

Concept Concept · · ·

(c) Polysemous Relation

Figure 3.2: Relationships between terms and the concepts they signify: Figure 3.2a illustrates a
mono-referential, unambiguous relationship between terms and concepts. Figure 3.2b shows an
ambiguity that may arise when several terms denote the same concept in a synonymous relation.
Figure 3.2c illustrates an ambiguous term-concept relation, a polysemous relationship where a
term may denote several concepts.

interpreted by the mechanism described in the GTT.1 However, in practice and in many
organisations, new terms are introduced in a bottom-up synthesis process. A lexical form
(which may or may not be newly invented) in contexts that bear a concept (which may
or may not be newly invented) is used frequently inasmuch as it becomes a term2 in the
organisation. In practice, therefore, terms can be ambiguous: a term can refer to several
concepts—similar to polysemy–homonymy in lexical semantics (Figure 3.2c); or, con-
trariwise, a particular concept can be denoted by several terms (Figure 3.2b). Heid and
Gojun (2012) suggest that the rapid evolution of organisations as well as multi-players
that are involved in an uncoordinated way, specifically in multidisciplinary domains, re-
inforces this situation and thus contributes to term ambiguity.

In contrast to the GTT, recent theories of terminology—for example, the commu-
nicative theory of terminology (CTT) by Cabré (1999, chap. 3) and the lexical-semantic
approach that is promoted by Faber and L’Homme (2014)—acknowledge the situation
stated above and take an empiricist approach to terminology in the sense that the mean-
ings of terms, and as a result the elements of domain knowledge, are not preconceived.
Simply put, in modern theories of terminology, knowledge is a posteriori that is dependent
upon the language. Hence, terms are understood differently with regards to the commu-
nicative context, for example, by the text surrounding them, the application they are used
in and so on.

Putting this discussion into the structuralist framework of distributional semantics,
terms are linguistic units that signify concepts by syntagmatic and paradigmatic relations
that they hold in a specialised communicative discourse (Figure 3.1b).3

The importance of a theory of terminology lies in the fact that it outlines practical
issues that must be addressed in terminology. According to the adopted theory of termino-

1it is, perhaps, best demonstrated in the applications of controlled natural languages.
2That is, a norm.
3It becomes evident that the main difference between the GTT and modern terminology theories is the

interpretation of the process of pairing concepts and lexical units—that is, as suggested in Chapater 1, the
result of the GTT’s rationalist vs. the CTT’s empiricist approach to comprehend the process of gaining
knowledge and communicating meanings.
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logy, computational terminology tasks are formulated differently and are thus approached
from alternative perspectives. Consequently, the perspective presented by a theory of
terminology establishes boundaries for the definition and classification of the tasks that
are currently addressed in computational terminology. However, as indicated by Cabré
(2003) in her theory of doors1, the mere fact of the existence of these issues is not affected
by the way they are formulated. Research in computational terminology addresses these
practical issues. Inevitably, although computational terminology is often associated with
the task of automatic term recognition, it goes beyond that and embraces a number of
research tasks.

In computational terminology, the task of automatic term recognition (ATR) has
been at the centre of discussion as an essential component of modern information systems.
In ATR, the input is a large collection of documents, that is, a special corpus, and the out-
put is a terminological resource. In ATR, the meaning of the generated terms is interpreted
in a wide spectrum of concepts in the domain that is being investigated and represented
by the input domain-specific corpus. Since ATR facilitates the automatic construction of
terminological resources, it is a significant processing resource in knowledge engineering
tasks for a multitude of applications such as information retrieval and machine translation.

As articulated by Kageura and Umino (1996), ATR deals with the computation of
measures known as unithood and termhood. It is believed that the majority of terms in a
domain are complex terms. Unithood indicates the degree to which a sequence of tokens
can be combined to form a complex term. It is, thus, a measure of the syntagmatic rela-
tion between the constituents of complex terms: a lexical association measure to identify
collocations. In the absence of explicit linguistic criteria to distinguish complex terms
from other natural language text phrases, a unithood measure construes the problem of
complex term identification as the identification of stable lexical units (Sager, 1990).2

Termhood, on the other hand, ‘is the degree that a linguistic unit is related to · · ·
some domain-specific concepts’ (Kageura and Umino, 1996). It characterises a paradig-
matic relation between lexical units—either simple or complex terms—and the commu-
nicative context that verbalises domain-concepts. Termhood, thus, conveys the measure-
ment of meaning. In the absence of a formal answer to the question ‘what are domain-
specific concepts?’—for instance, see the discussions in Laurence and Margolis (1999);
Fodor and Lepore (2012)—devising a termhood measure for distinguishing terms and
non-terms is a difficult and often conflictual task.

1In the theory of doors, Cabré (2003) elaborates on her position as follows:

This theory is suitably represented by the image of a house; let us assume a house with
several entrance doors. We can enter any one of its rooms through a different door, but the
choice of the door conditions the way to the inside of the house. The internal arrangement of
rooms is not altered, what does change is the way one chooses to get there.

2See Evert (2004) on applications of lexical association measures for the identification of lexical units.
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Figure 3.3: Lexical unit extraction tasks and the granularity in which they interpret the of the
meanings of a lexical item. Although all the tasks listed in this figure extract lexical items that
denote salient domain concept, the scope and the granularity in which they interpret the meanings
of lexical units is different. At the highest level of granularity, automatic term recognition tasks
investigate the meanings of lexical units across the set of documents that constitute a domain-
specific corpus. At the least level of granularity, entity recognition tasks decide about the meanings
of lexical units in a given snippet of text. The diagram can be extended by adding new dimensions
that take into consideration characteristics of the communicative context other than the size of the
input text. This diagram can form a basis to suggest taxonomies of tasks that extract lexical units
from text.

Computational terminology, however, embraces a set of techniques other than
ATR, which also aim to extract stable lexical units. In ATR, the communicative con-
text is a domain-specific corpus. Therefore, ATR should not be confused with tasks such
as keyword extraction and entity recognition that bear a close resemblance to it. These
tasks are similar to ATR in the sense that they extract stable lexical units from natural lan-
guage text. However, they are different from ATR, because the meaning of the extracted
lexical units—thus the termhood measure—is interpreted in a context other than a special
corpus (Figure 3.3). For example, an automatic keyphrase extraction algorithm pulls out
lexical units from a single document that best describe the content of this document. Both
unithood and termhood must be also measured in automatic keyphrase extraction. How-
ever, the criterion for their definition and the information available for their computation
are different from ATR.

Categorisation of term extraction tasks can be extended by considering character-
istics of communicative contexts other than the size of the input text. Cabré et al. (2007)
classify term extraction tasks as intermediary and terminal with respect to the end-users’
interaction with the extracted terminological resources. An intermediary application con-
structs a terminological resource—for example, a domain-specific ontology—that will be
exploited as a component of other information systems; for example, to address problems
such as information extraction and retrieval. Hence, in an intermediary application, end-
users do not interact directly with the constructed terminological resource. However, in
terminal applications, a terminological resource is constructed to be accessed and used
directly by a particular user.
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Besides the communicative context, the term extraction techniques are often clas-
sified by the linguistic characteristics of the extracted terms. For instance, Yangarber et al.
(2002) distinguish tasks that address the extraction of proper names from those that fo-
cus on the extraction of generalised names. Accordingly, Yangarber et al. (2002) relate
named entity recognition tasks to the former category of term extraction methods since
their output is limited to the names of people, organisations, locations, and so on. For
the latter category, they enumerate methods that extract mentions of concepts such as the
name of biological agents based on the rationale that these terms are not proper names.
Similarly, one may place keyphrase extraction methods in this category.

Tasks that are addressed in computational terminology can be further distinguished
by the direction in which they bridge the gap between terminological resources and text.
Recent developments of ontological resources have stimulated a research strand that tar-
gets the reverse of intermediary term extraction tasks. The goal of these applications is to
fill the gap between an available knowledge base—for example, an ontology—and natural
language text. In these tasks, given a particular concept in a knowledge base (e.g., a class
and its instances in an ontology), a method—which is called term mapping by Krautham-
mer and Nenadic (2004)—decides if this concept or its instances have been mentioned
in a given text snippet. Entity linking, which has been promoted by the series of Text
Analysis Conferences,1 is another term that characterises these research efforts (see also
Rao et al., 2013).

In contrast to term mapping techniques, there are methods that organise constitu-
ent terms of a terminological resource into a variety of classes. Given a terminological
resource, in these methods, the usage of terms in a corpus is assessed to decide their
membership in concept classes. If the classes are known prior to the assignment task,
then the task is known as term classification (e.g., see Nigel et al., 1999). Otherwise, if
the classes are unknown, the task is called term clustering (e.g., see Dupuch et al., 2014).
As described in Chapter 5, from a linguistic point of view, these methods address the
identification of hypernym/hyponym relationships between the entries of a terminological
resource. Krauthammer and Nenadic suggest that these three tasks—that is, term recogni-
tion, term classification, and term mapping—are essential to form a closed loop between
terminology and natural language text, for the facilitation of automatic construction and
maintenance of terminological resources (Figure 3.4).

A more elaborate taxonomy of techniques in computational terminology can be
obtained by discerning elements and characteristics of the communicative context other
than what is discussed here. As implied in the discussions, besides the methods that
are named above, the outlook of ‘terms as units of language’—as named by L’Homme
(2014)—underlines the requirements for addressing a number of challenges such as term
variation and acquisition of semantic relations for systematic management of termino-

1See http://www.nist.gov/tac/about/.

http://www.nist.gov/tac/about/
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Text Term Recognition Term
Classification

· · · Terminological Resource

Term Mapping

Figure 3.4: Significant processes in computational terminology. Whereas term extraction and
classification techniques distil a terminological resource from text, a set of techniques in com-
putational terminology try to bridge the gap between terminological resources—such as domain
ontologies—to natural language text.

logical resources. Each of these problems is an active research topic in computational
terminology, beyond the scope of this thesis.

In the remaining sections, the common mechanism of term extraction methods is
discussed in Sections 3.2. The involved processes, that is, candidate term extraction and
the scoring procedure are explained in Sections 3.3, and 3.4, respectively. In Section 3.5,
organising terminologies is discussed briefly. The use of machine learning methods and
a number of term classification techniques are explained in Section 3.6. Section 3.7 con-
cludes this chapter by explaining the evaluation of theses methods.

3.2 Prevalent Mechanism in Term Extraction Tasks

As suggested in Nakagawa (2001a), the algorithms for term recognition are usually in the
form of a two-step procedure: candidate term extraction followed by a term scoring and
ranking process (Figure 3.5).

Candidate term extraction deals with the term formation and the extraction of can-
didate terms. The latter is not a trivial task since usually there are no clear differences
between a term and general words and phrases in the language at the text surface level.
In particular domains such as molecular biology, a share of new terms—for example, the
name of new genes—are single-token simple terms. These terms are usually formed and
invented using a set of common predefined morphological patterns. The identification
of these patterns, for example, as suggested in Ananiadou (1994) and in Zweigenbaum
and Grabar (1999), can be helpful in the process of candidate term extraction. However,
this kind of term formation is not employed in a large number of domains. Therefore,
solutions such as morphological pattern analysis may not always be useful for identify-
ing simple terms. Furthermore, as suggested by Nakagawa (2001a), multitudes of terms
are complex terms in the form of uninterrupted collocations. Similar to other types of
multi-word expressions, distinguishing these complex terms from phrasal structures in
the language has remained a research challenge. Several methods for the extraction of
candidate terms are suggested, which will be reviewed in the next section.1

1As can be inferred, this processing pattern is very similar to the extraction of multi-word expressions.
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Text Candidate Term Extraction Scoring and Ranking

Termhood

Unithood

Valid Terms

Figure 3.5: Prevalent architecture of terminology mining methods.

Although several Categorisations of the scoring and ranking methods can be given
from a methodological point of view (e.g., statistics-based, machine learning-based, rule-
based, etc.) or by the kind of information that is exploited for weighting (e.g., linguistic-
based, statistical-based, hybrid), as stated earlier, all these techniques rely on the text
and take a corpus-based distributional approach to score and rank terms. The usage of
candidate terms in a communicative context (e.g., domain-corpus) is formulated in a
machine-tractable format—for example, in the form of a contingency table or a vector
space model. To compute a score for each candidate term, the collected data is then as-
sessed using statistical measures, similarity metrics, language models or a set of rules.
The scoring methodology is determined by the metric employed for scoring candidate
terms (e.g., only termhood, only unithood, or a combination of both) as well as the ob-
jective of the task in hand, which often decides the type of paradigmatic relation that the
termhood measure characterises.

This two-step term extraction procedure can be followed by a number of additional
processes. For instance, following the two-step procedure, a term selection process may
discard a number of extracted terms that have a score below a particular threshold. The
strategy for designing this kind of post-processing technique is determined by the intended
application for the extracted terms and therefore is not considered as a core process in a
term extraction task. Similarly, depending on the employed methodology, a number of
pre-processings—for example, part-of-speech tagging, syntactic analysis, etc.—might be
required prior to the two-step term extraction procedure.

3.3 Candidate Term Extraction

The first step in most term extraction tasks is to extract candidate terms from text. As
suggested earlier, candidate term extraction is a non-trivial task. Terms’ boundaries can-
not be distinguished easily from other words and phrases in the text surface. Whereas
earlier research in term extraction suggested that terms show particular morphological
or syntactic behaviours, recent research in terminology indicates that terms show a sim-

However, aside from the difference in scope of research, one notable difference between the research in
multi-word expressions and terminology extraction is the scoring procedure in these areas. In term extrac-
tion, both unithood and termhood are employed to weight terms, whereas multi-word expression research
leans towards unithood measurement (see Baldwin and Kim, 2010, for an overview of research in multi-
word expressions).
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Candidate Terms

All Combinations of Tokens

Figure 3.6: Output of the candidate term extraction process: a subset of all combinations of tokens
in input text corpus.

ilar linguistic behaviour as general words and phrases in a language. From a radical
perspective, in a given text, any combination of tokens and words can be a term. Con-
sequently, choosing candidate terms can be seen as the problem of finding a subset of
tokens’ sequences (which are likely to be terms) in an exponentially large search space,
thus resulting in an NP-hard problem. Luckily, a number of linguistic observations sug-
gest particular criteria for the terms’ linguistic behaviours—for example, the frequency
and the length of terms—which are utilised to define a set of heuristics to limit this search
space (Figure 3.6).

In a limited number of domains, knowledge workers may have a guideline for in-
troducing new terms, particularly simple terms. For example, in molecular biology the
names of genes are often a combination of letters and numbers. Similar regulations can
be found in automotive engine technologies. As suggested earlier, these observations,
coupled with the traditional terminology’s outlook, led to a number of research methods
that assume term formation is a planned, conscious, and well-structured process (Anani-
adou, 1994). Hence, in order to extract candidate terms, these methods pay extra attention
to the internal morphosyntactic structure of terms and often ignore the context in which
they appear (Accordingly, Maynard and Ananiadou (2001) classify these techniques as
intrinsic approaches). In these methods, a terminological resource is often available prior
to the extraction task and it is employed to identify new candidate terms.

While the above-mentioned morphosynatic-based methods have been employed
in a few domains, they are not applicable in a large number of sublanguages; for example,
creation of new terms may not follow particular morphosyntactic patterns and a termin-
ological resource may not be available prior to the extraction task. Besides, a simple
search in a terminological resource shows that the majority of terms are multi-word com-
plex terms. The extraction of these terms introduces additional complexity to the process
of candidate term extraction.

Hence, apart from the aforementioned morphosyntactic-based methods that focus
on the terms’ internal structure, several other techniques have been introduced to address
the problem of candidate term extraction. Five major methods can be identified for the
extraction of candidate terms:

• the n-gram-based techniques;
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• linguistic filtering using part-of-speech tag sequence patterns;
• linguistic filtering using syntactic relation patterns;
• techniques that rely on the presence of particular markers in text;
• contrastive approaches.

A combination of these techniques can also be employed to improve the results (e.g., see
Aubin and Hamon, 2006). In the following section, each of these methods are described.

3.3.1 The N-Gram-Based Methods

In the context of candidate extraction, an n-gram is a contiguous sequence of n tokens
from text. In n-gram-based methods, the n-gram is usually bound to a text window of a
particular size (often, 1 ≤ n ≤ 6). The most common size for n is two in which two-word
collocations (bigrams) are considered as the potential candidate terms. In order to reduce
the number of undesirable sequences of tokens and restrict the size of the set of the extrac-
ted candidate terms, a number of heuristics are employed to filter the extracted n-grams.
For instance, n-grams that contain stop words—such as articles, particular prepositions,
auxiliary verbs, etc.—are discarded. A major advantage of the n-gram-based techniques
is that they can be employed in the absence of linguistic analysis tools. Hence, they al-
low the terminology extraction task to be carried out with purely statistical approaches.
Therefore, n-gram-based techniques are desirable when dealing with the under-resourced
languages where the linguistic analysis tools are usually not available (e.g., see Pinnis
et al., 2012).

Compared to other techniques of candidate term extraction, the use of n-gram-
based methods often results in lower precision. The n-gram-based methods generate a
large set of candidate terms of which the number of correct terms compared to incorrect
terms is expectedly very low. For example, in the context of a keyphrase extraction ap-
plication, Hulth (2003) investigates the performance of a few candidate term extraction
methods including an n-gram-based technique. In her methodology, the extracted candid-
ate terms using different techniques are classified as valid or invalid keyphrase using the
same supervised machine learning technique. Subsequently, she compares the keywords
assigned by the classifier with a list of the author’s provided keywords in order to es-
timate the performance of the candidate term extraction techniques. In these experiments,
the employed n-gram-based method shows one of the worst performances. Similar results
can be found for an automatic term extraction task in Zadeh and Handschuh (2014a).

3.3.2 Part-of-Speech-Based Methods

Linguistic filters in the form of part-of-speech (PoS) tag sequence patterns have been
widely employed for the extraction of candidate terms (Justeson and Katz, 1995). These
methods are often affiliated by the linguistic approaches to term recognition. In this cat-
egory of techniques, patterns of particular PoS tag sequences are employed to extract
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candidate terms. These patterns are often represented by regular expressions. The use of
these patterns yields to the assumption that the construct of terms is restricted to gram-
matical structures of particular PoS sequences. For example, by observing the target do-
main’s terms, Justeson and Katz (1995) only consider candidate terms that are composed
of a combination of nouns (WN), adjectives (WA) and prepositions (WP) and satisfy the
following PoS pattern:

((WA|WN)+|(WA|WN)∗(WNWP)?(WA|WN)∗)WN

Bourigault’s (1992) LEXTER is another system that employs PoS-based linguistic
filtering for the extraction of candidate terms. However, instead of defining desirable PoS
patterns, LEXTER employs negative knowledge about the form of terminological units,
by identifying patterns that do not meet the requirements for forming candidate terms. In
the proposed approach, similar to noun phrase chunking, punctuations and particular PoS
tags such as verbs and conjunctions—which Bourigault calls frontier markers—are used
for determining the boundaries of sequences of tokens that can form candidate terms.1 A
recent example of this methodology can be found in Meyers et al. (2014).

Park et al.’s (2002) GlossEx is another example of a term extractor system that
employs PoS tag sequence patterns to extract words and phrases in order to construct
domain-specific glossaries. The automatic extraction of candidate terms in GlossEx is
limited to the PNoun Phrase structure that is defined by the following regular expressions:

PNoun Phrase = W?
DT(WVBG|WVBN)?P∗Modifier(WNN|WNP|WNPS),

in which PModifier is defined as:

PModifier = ((WJJ(WCCWJJ)∗)|(WNN|WNP|WNPS)?).

In these patterns, WX denotes a word of the particular PoS category X in which X is a PoS
tag from the inventory of the tags employed in the Penn Treebank Project. Table 3.1 shows
the Penn Treebank PoS tags and their corresponding definitions (Taylor et al., 2003).

In contrast to the above-mentioned methods that define PoS sequence patterns—thus
candidate terms—of arbitrary length, a number of research restrain the length of candid-
ate terms. For instance, Daille (1995) limits the length of their employed patterns to four
words, whereas Frantzi (1997) employs patterns that are only two words long. Empirical
evidences show that the length of terms is often limited to a few words/tokens. For in-
stance, Maynard (2000) states that in most applications the length of term is usually up to
4 words and it is extremely rare for a term to exceed 8 words in length. Hence, limiting
the length of candidate terms may enhance the accuracy of the candidate term extraction

1The idea behind the method is best described in Abney (1992).
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CC Coordinating conj. RB Adverb
CD Cardinal number RBR Adverb, comparative
DT Determiner RBS Adverb, superlative
EX Existential there RP Particle
FW Foreign word SYM Symbol
IN Preposition TO infinitival to
JJ Adjective UH Interjection
JJR Adjective, comparative VB Verb, base form
JJS Adjective, superlative VBD Verb, past tense
LS List item marker VBG Verb, gerund/present participle
MD Modal VBN Verb, past participle
NN Noun, singular or mass VBP Verb, non-3rd ps. sg. Present
NNS Noun, plural VBZ Verb, 3rd ps. sg. present
NNP Proper noun, singular WDT Wh-determiner
NNPS Proper noun, plural WP Wh-pronoun
PDT Predeterminer WP$ Possessive wh-pronoun
POS Possessive ending WRB Wh-adverb
PRP Personal pronoun LRB Left bracket character
PP$ Possessive pronoun RRB Right bracket character

Table 3.1: The list of part-of-speech tags employed in the Penn Treebank Project: ps. and sg.
denote person and singular, respectively.

process without necessarily decreasing its recall.
Using PoS-based filters implies the need for autoamtic PoS tagging prior to the

process of candidate term extraction. Ittoo et al. (2010) highlight problems that can arise
due to the presence of noise in the output of this automatic PoS tagging process, par-
ticularly when dealing with irregular texts with subtle language patterns and malformed
sentences. For instance, in the reported experiment by Ittoo et al., authors noticed that
many nouns in their evaluation corpus are tagged incorrectly as progressive-verbs, and
therefore resulting in misleading and inaccurate detection of candidate terms. To make
the employed PoS patterns tolerant to these errors and solve the problem, Ittoo et al. refer
to the actual output of their employed PoS tagger and define patterns that encompass
progressive-verbs:

(W?
VBG)(W∗

A)(W+
N)

where WVBG, WA, and WN respectively denote progressive verb, adjectives, and nouns.
Dorji et al. (2011) use PoS patterns for the automatic extraction of candidate terms

that are used as index terms in a document classification task. By observing appropriate
terms in their application, Dorji et al. have adopted PoS sequence patterns with various
lengths of two to ten words. However, instead of specifying the complete PoS sequence
patterns, they define seven core patterns of lengths two to four words. These sequences
of PoS tags can in turn be followed by an arbitrary number of nouns to form patterns
of maximum length ten words. Similarly, Eck et al. (2010) only consider a subset of
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Daille (1995) (AN |NN)

Frantzi (1997) (N|A) + N

Nakagawa (2001b) N?

A(N |A)∗N
NPofN
F

Zervanou (2010) (A|N |VBG|VBN)+N
(A|N |VBG|VBN)C(A|N|VBG|VBN)N
(A|N |VBG|VBN)+NCN
NP(A|N |VBG|VBN)∗N
NP(A|N |VBG|VBN)∗NCN
NCNP(A|N|VBG|VBN)∗N
(A|N |VBG|VBN)C(A|N|VBG|VBN)N
(A|N |VBG|VBN)+NCN

Bonin et al. (2010a) N+(P+(N|A)+|N|A)

Table 3.2: Proposed PoS sequence patterns for Candidate Term Extraction. A denotes adjectives;
N denotes nouns; C denotes conjunctions; P denotes prepositions; Pof denotes the preposition of ;
F denotes foreign words; VBG denotes verbs in gerund form; and, VBN denotes verbs in the past
participle form.

noun phrases that do not contain any preposition. The use of PoS sequence patterns
is not limited to what is reported here and has been widely employed in term extraction
tasks (e.g., see Anick et al., 2014; Zervanou, 2010; Hsu, 2010; Bonin et al., 2010a; Barrón-
Cedeño et al., 2009).

Apart from algorithmic variances, the coverage of patterns is the major difference
between techniques that employ PoS-based patterns for candidate term extraction. The
higher coverage of patterns yield a higher recall, but usually at the expense of lower
precision. Preference for precision requires a strict filter which permits a limited sequence
of words as candidate terms, whereas preference for recall demands a filter with relaxed
restrictions on the permitted sequences of words (Frantzi et al., 2000a). In addition, Eck
et al. (2010) emphasise that the choice of an appropriate PoS pattern depends on the
common structures that are employed by the sublanguage of the corpus. The definition of
patterns using PoS sequences, thus, is an open question and no best universal pattern can
be found. The reported experiment by Hulth (2003) states that considering PoS tags can
result in a dramatic improvement of precision. Moreover, in her evaluation, the highest
recall has been reported for the candidate term extraction based on a set of PoS tag patterns
(surprisingly even in comparison to the n−gram technique). Table 3.2 shows additional
examples of the employed PoS sequence patterns in research literature.
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3.3.3 Syntactic-Based Methods

Research literature reports the use of linguistic filters that employ syntactic relations for
the extraction of candidate terms. The first category of these methods employs syntactic
patterns for the identification of term variations rather than the extraction of candidate
terms. For example, Jacquemin and Tzoukermann (1999) report the use of a transform-
ational unification-based syntactic parser together with morphosyntactic analysis for the
identification of term variants in a controlled vocabulary environment. If a dictionary
of terms is available prior to the extraction task, this method can be used for generating
candidate terms.

The second category of syntactic-based methods use shallow parsing for the ex-
traction of candidate terms. Instead of the extraction of collocations with specific PoS
patterns, noun phrase chunks are extracted as candidate terms (e.g., see Evans and Zhai,
1996; Nakagawa, 2001a; Fan and Chang, 2008)1. In the reported results by Hulth’s
(2003), this technique gives the highest precision amongst PoS-based and n-gram tech-
niques. However, in an experiment that I have reported in Zadeh and Handschuh (2014a),
whereas noun phrase chunking outperforms an n-gram-based technique, it underperforms
a PoS-based method.

The third category of syntactic-based filters considers the role of compounding
in term formation and employs syntactic relations according to the head-modifier prin-
ciple (e.g., see Jakubíček et al., 2014; Hippisley et al., 2005). By observing the role of
compounding in term formation, Hippisley et al. (2005) apply the head-modifier principle
in compounding word formation for the extraction of complex candidate terms. Accord-
ing to the head-modifier principle, in a syntactic construct, one of the constituents acts as
the head. The head has a strong association to the core semantics of the construct, and
it is modified by the other dependent constituents. In the proposed method in Hippisley
et al. (2005), candidate terms are extracted by identifying particular syntactic relations to
the left and the right side of the head. The major advantage of these techniques is that
the head-modifier principle can additionally be used for deconstructing complex terms.
Therefore, the proposed approach by Hippisley et al. is more popular within the context
of machine translation applications for multilingual term extraction.

A detailed description of a head-modifier-based technique for candidate term ex-
traction can be found in Wong (2009). Using dependency relations, the proposed method
starts with a search for the heads in a sentence. Using the acquired head-modifier inform-
ation from the dependency parse, the head is then extended to both left and right direction
to identify maximal-length noun phrases. In the proposed method, the head-driven filter
restricts the PoS tags of modifiers to nouns (except possessive nouns), adjectives, and
foreign words. This process is followed by the use of a statistical measure in order to
attach terms that appear immediately after one another, or terms that are separated by a

1Perhaps, a number of methods that are listed in Section 3.3.2 can also be added under this category.



82 Chapter 3. Computational Terminology: Term Extraction and Classification

preposition or coordinating conjunction.
The use of syntactic relations for the extraction of candidate terms is not limited

to the above-listed methodologies. For example, Seretan et al. (2004) describe a sophist-
icated technique for the extraction of multi-word complex terms. In the proposed method,
a set of pairs of words that are connected directly through a syntactic relationship are first
extracted. Instead of the sequence of tokens in the input corpus, the extracted pairs of
words are searched for extracting candidate terms. The set of extracted pairs of words is
then utilised for the extraction of compound words, idioms and collocations from French
and English parallel corpora.

3.3.4 Methods Based on Particular Structures in Text

An alternative approach to candidate term extraction exploits specific properties of the
input text. A growing numbers of research exploits the presence of mark-ups in input
text to extract candidate terms. For instance, Brunzel (2008) uses the HTML mark-ups in
order to extract candidate terms and Hartmann et al. (2011) and Toral and Munoz (2006)
exploit the semi-structured representation of text in Wikipedia’s articles in order to form
a set of candidate terms. The use of these techniques therefore is limited to domains in
which text is annotated by mark-ups.

In the same way, in particular domains, candidate terms can be extracted with the
help of specific lexical patterns or the presence of mark-ups in input text. For instance, in
biotechnology, Rindflesch et al. (2000) describe a method for the extraction of candidate
terms that employs a list of general binding words. In the proposed application domain,
the presence of binding words in a noun phrases qualifies it as a candidate term. Similar
method for the extraction of disease risk factors for metabolic syndrome in biomedical text
is reported by Fiszman et al. (2007). Fiszman et al. (2007) suggest the use of indicative
words including specific lists of verbs and nouns. Similar methods are proposed in Hazen
et al. (2011) for the extraction of terms related to imaging observations in radiology and
in Gooch and Roudsari (2011) for the extraction of clinical terms.

3.3.5 Contrastive Approaches

Contrastive approaches exploit a reference corpus of general language to identify simple
and complex candidate terms from input text (Drouin, 2004, 2003). To form the hypo-
thesis space of likely candidate terms, these methods rely on one of the techniques listed
in the previous sections, for example, an n-gram-based method. Candidate terms are ex-
tracted from both the target special corpus and a general language corpus (e.g., the British
National Corpus1 when processing English text) or a special corpus in knowledge domain
other that the target special corpus. The extracted candidate terms and their frequencies in

1See http://www.natcorp.ox.ac.uk/.

http://www.natcorp.ox.ac.uk/
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these two corpora are exploited to distil a set of likely candidate terms in the given special
corpus. Similar methods can be found in Basili et al. (2001).

3.3.6 A Summary of Methods

To summarise, methods that employ linguistic information such as PoS tags and syntactic
relations demand more resources than methods that rely only on the text surface struc-
ture. Methods that employ PoS-based sequence patterns require a PoS tagger with an
acceptable performance. Similarly, syntactic-based methods demand a form of chunking
or a syntactic parsing prior to the extraction task. These methods have been reported to
deliver high precision; however, their required resources may not be available for all lan-
guages or domains. On the other hand, the n-gram-based techniques do not require such
resources and are language-independent. However, these methods are reported to have
a low precision, which can diminish the performance of the subsequent ranking process.
The application of techniques such as the use of text structure, or using lexical indicators
may not be applicable to all domains. Lastly, as suggested in Bonin et al. (2010b), the use
of contrastive techniques can enhance the results.

In real-world applications, in order to improve the results, a combination of the
above-listed methods are employed. For instance, Aubin and Hamon (2006) consider a
combination of PoS sequence patterns, head-modifier relationship as well as a contrastive
technique to extract a list of candidate terms. In another example, Hulth (2003) reports the
highest F-Score in her experiments when candidate term extraction is carried out using a
combination of n-gram techniques and PoS tag sequence patterns.

3.4 Methods for Scoring Candidate Terms

In automatic term recognition tasks, the scoring and ranking process follows the extraction
of candidate terms. It is assumed that the set of extracted candidate terms contains both
valid and invalid terms. Put simply, a candidate term is valid if it denotes a concepts
from the knowledge domain that is represented by the input special corpus to the term
extractor.1 Hence, the main goal of term scoring process is to distinguish valid terms
from invalid terms. This goal is often achieved by a ranking and filtering mechanism. The
scoring process assign a score to each candidate term, ideally according to the significance
of the concepts that they represent in the target knowledge domain. After this process,
candidate terms with a score below a certain threshold are usually discarded and the rest
are ranked and accepted as valid terms for further processes (Figure 3.7).

Traditionally and from a methodological perspective, terminology extraction ap-
proaches are often classified as linguistically-motivated, statistically-oriented, and hybrid

1As discussed earlier in Section 3.1, there is no straightforward definition of valid terms.
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Valid Terms

Candidate Terms

All Combinations of Tokens

Figure 3.7: It is assumed that the output of the candidate term extraction process—that is, a sub-
set of all combinations of tokens in input special corpus—contains both valid and invalid terms.
Hence, a scoring and ranking process is employed to distinguish valid terms—that is, a subset of
candidate terms.

methods ( e.g., see Kageura and Umino, 1996, description on the topic). In this clas-
sification, often the candidate term extraction and scoring procedure are not heeded in-
dependently from each other. Hence, linguistically-motivated methods often encompass
techniques that employ linguistic filtering for the extraction of candidate terms (although
recent methods also use linguistic information as an attribute in statistical models).1 In
this classification, the statistical methods employ a mathematical model such as prob-
abilities to perform the extraction task and ignore linguistic structure of terms and their
context. As expected, the methods in this category often use n-gram-based methods for
the extraction of candidate terms. The third category of methods in this classification,
known as hybrid methods, offers solutions that combine both linguistic information and
statistical measures. In fact, since the majority of the methods for terminology extraction
rely on the text and adopt a corpus-based approach, they use a kind of statistical informa-
tion derived from the corpus at some stage in the process. Hence, corpus-based methods
are classified as statistically-oriented or hybrid technique.

Alternatively, as suggested earlier, the procedure of term extraction can be ana-
lysed and classified from a functional perspective: (a) methods that deal with the iden-
tification of atomic meaning-bearing lexical units and (b) methods that indicate the de-
sirability of the extracted candidate terms as a unit of meaning in a terminology database.
As suggested by Kageura and Umino (1996), in the former group, the focus is on the
unithood measurement, thus the extraction of candidate terms that form stable lexical
units. However, the focus of the former methods is on the termhood measurement, that is,
scoring atomic lexical units by their significance in the target knowledge domain.

In the framework of distributional semantics, the computation of unithood is per-
ceived as the identification of syntagmatic relationships between words that constitute a
complex term. These relationships are often in the form of collocations. Therefore, the
first category of methods deals with lexical association measures. A general account of
these methods can be found in Evert (2004); Hoang et al. (2009); and, Pecina (2010).
Similarly, in the framework of distributional semantics, the computation of termhood im-

1The use of linguistically-motivated approaches can be traced in information retrieval tasks for the
problem of index term extraction (e.g., see Baxendale, 1958).
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plies the identification of paradigmatic relations. These paradigmatic relations character-
ise the relevance of the meaning of terms to significant concepts in the knowledge domain
and with respect to the communicative context, that is (in its simplest form), the special
corpus.1

In corpus-based distributional approaches, the text and the statistics that are in-
duced from its analysis are the major source of information to characterise these paradig-
matic relations. As detailed in the next few sections, the statistical information about
the usage of terms can be modelled and presented in a variety of ways, for example,
as simple as computing tf-idf of terms to sophisticated learning algorithms. To charac-
terise termhood, techniques other than corpus-based approaches are also feasible. For
example, Maynard (2000) draws attention to the incorporation of knowledge-bases and
their internal structure for the development of terminology extraction systems. The study
of these methods, however, remains out of the scope of this thesis.

As described in the preamble of this section, statistical measures employed in ter-
minology extraction can be classified into two categories: measures that address unithood
and those that address termhood. However, drawing such a clear line is sometimes not
possible (Kageura and Umino, 1996). According to Kageura and Umino (1996), statistical
measures in terminology extraction are employed by relying on the following hypotheses:

• a lexical unit that appears frequently in a special corpus is likely to be a term of the
domain knowledge that the special corpus represents;

• a lexical unit that appears only in one special corpus is likely to be a term of the
domain knowledge that the special corpus represents;

• a lexical unit that appears more frequently in a special corpus than in a general
language corpus is likely to be a term in the domain knowledge that is represented
by the special corpus.

As discussed earlier, unithood is only defined for complex terms. The examples
of statistical measures that have been used to measure unithood are numerous: Pearson’s
chi-square test and Log-likelihood, mutual information (e.g., as employed in Church and
Hanks, 1990); coefficients for sequential data such as the Ochiai and Kulczynski coeffi-
cient suggested by Daille (1995); customised measures such as paradigmatic modifiability
by Wermter and Hahn (2005); mutual expectation as suggested in Dias and Kaalep (2003),
and so on.

Likewise, a long list of statistical measures have been employed to characterise
termhood: inverse document frequency (idf) suggested in Jones (1972); term frequency–
inverse document frequency (tf-idf) as used in Salton (1992) and its modifications such as
Feiyu et al.’s (2002) kfidf; Frantzi and Ananiadou’s (1996) c-value and nc-value; and, the
statistical barrier measure proposed in Nakagawa (2001a) are a few examples.

1In fact, the communicative context goes beyond the special corpus. It is a complex system consisting
of several elements such as the knowledge the users, the intended application, and so on.
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3.4.1 Unithood Measures

Pearson’s chi-square test (χ2 test) is an intuitive statistical measure that can be used for
characterising both unithood and termhood. χ2 is measured by the comparison of the
observed and expected frequencies under the null hypothesis of independence:

χ2 =
∑ ( fo − fe)2

fe
, (3.1)

where fo is the observed frequency and fe is the expected frequency (see Manning and
Schütze, 1999, for further explanations). If fo and fe are derived from the observed fre-
quencies in the collocations of constituent words in complex terms—for example, as sug-
gested in Dunning (1993)—then the computed χ2 value can be interpreted as a measure
of unithood. However, if fo and fe are derived from the observed occurrences of terms in
documents—for example, as suggested in Kilgarriff (1996)—then the computed χ2 value
can be interpreted as a measure of the terms’s association to documents, hence term-
hood (see also Rayson et al., 2004). It is important to note that the chi-squared measure
is meaningful only when the collected frequencies are greater than 5.

Log-likelihood ratio test (LL) is another statistical measure that has been used for
characterising unithood. According to Dunning (1993), LL shows one of the best per-
formances, particularly when frequencies are collected from small corpora. As described
in Daille (1995) and Korkontzelos et al. (2008), LL can be seen as a refinement of the χ2

test. Instead of relying on the assumption of a normal distribution of words in colloca-
tions, LL compares the observed frequency counts in a sub-corpus with the counts that
would be expected in a reference corpus to measure the likelihood of co-occurrence. For
bigrams wiw j, LL can be computed as follows:

LL = log2
Ps(wi,w j)
P(wi,w j)

, (3.2)

where P(wi,w j) is the probability of observing wi and w j as a bigram in the reference
corpus, and Ps(wi,w j) is the probability of their occurance as bigram in the subset s of the
corpus (i.e., the target domain). Similar to the interpretation of χ2 test, a high LL means
that observed and expected values diverge significantly, and thus indicates that wi, and w j

do not co-occur by chance. In contrast, a LL value close to 0 indicates that wi, and w j

do co-occur by chance. LL ratio is highest when wi, and w j only appear as bigrams next
to each other. However, as mentioned in Korkontzelos et al. (2008), the LL ratio is also
high for rare bigrams. Hence, the LL ratio of noisy bigrams such as typographical errors
is also high, which consequentially may negatively affect the performance.

Similar to LL and χ2, point wise mutual information (PMI) can also be used to
measure the unithood of complex candidate terms in a corpus. PMI, however, estimates
the expected probabilities using the products of the probabilities of the constituent words
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of complex terms. For terms that consist of two words wi and w j, PMI is defined as:

PMI = log2
P(wi,w j)

P(wi)P(w j)
, (3.3)

where it is assumed that wi and w j appear independently. A high PMI value shows a strong
association between the constituent words of the candidate terms. Hence, candidate terms
that have high PMI value are assumed to be valid complex terms. In contrast to LL, PMI
gives a low score to the rare candidate terms. The Dice measure, Z-score, and rank ag-
gregation as suggested in Dinu et al. (2014) are other methods that can be used to evaluate
the unithood of complex terms. As stated earlier, any method of sequential data model-
ling can be used to estimate unithood. Moreover, the use of statistical information other
than words occurrence information is also feasible. For example, Tsvetkov and Wintner
(2014) construct of a Bayasian network by integrating diverse statistical information to
extract multi-word expressions.1

3.4.2 Termhood Measures

The tf-idf measure, a term weighting score often used in information retrieval, is perhaps
one of the most applied statistical measures for characterising termhood. In automatic
term recognition tasks, tf-idf is usually used as a baseline for the comparison of termhood
measures (Zhang et al., 2008). The tf-idf score is the product of two statistics: inverse
document frequency and term frequency. Inverse document frequency idf(ti) measures the
general importance of a term ti in a collection of documents D by counting the number of
documents that contain ti, usually but not necessarily in a logarithmic scale:

idf(ti) = log
|D|∣∣∣∣{d j ∈ D : ti ∈ d j

}∣∣∣∣ , (3.4)

where |D| denotes the cardinality of D, and the denominator indicates the number of
documents that contain ti. Subsequently, tf-idf for the term ti over D is give by:

tf-idf(ti) = tf(ti) × idf(ti), (3.5)

where tf(ti) can be the frequency of the term ti in the corpus. This definition of the tf-
idf score is employed by assuming that important terms occur in particular documents
frequently whereas they are relatively rare in the input corpus (i.e., they occur in a small
number of documents). This assumption can be refined; hence, alternative definitions of
tf(ti) and idf(ti) may be used.

Another approach to estimate a termhood score is that of corpus comparison—or,

1As suggested by Evert (2009) and Kilgarriff (2005), in this context, the assumption of independence
is not reasonable and thus can decrease the performance of the method.
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contrastive methods as explained earlier for candidate term extraction. In these methods,
a corpus is compared against a general language corpus. It is often assumed that the
distribution of valid terms and invalid terms varies in corpora of different types (Knoth
et al., 2009). One implicit way to implement this logic is the use of statistical hypothesis
testing, for example, as described earlier for Equation 3.1 and 3.2 and as employed in Kil-
garriff (2001) and Rayson and Garside (2000). Alternatively, a category of contrastive
approaches define statistical measures that explicitly exploit the observed frequencies in
different corpora (e.g., see Drouin, 2004; Ittoo and Bouma, 2013). Liu and Kit (2008)
suggest that these approaches are more desirable than techniques that only utilise a spe-
cial corpus since they employ intrinsic statistical characteristics of valid terms in different
corpora. Ahmad et al.’s (1999) Weirdness score is a classic example of this category of
techniques that can be used to assign a termhood measure to a candidate terms t in a
special corpus:

Weirdness(t) =
fs(t)/ns

fg(t)/ng

, (3.6)

where fs(t) and fg(t) are the frequency of t in the special and a general corpus, respect-
ively; similarly, ns and ng are the total frequency of terms in the respective corpora.

3.4.3 Hybrid Measures and a Little More of the Context

Amongst the statistical methods for termhood and unithood measurement, Frantzi and
Ananiadou’s (1996) c-value measure has attracted much attention. In contrast to statistics
measures introduced previously, the c-value score can be seen as a hybrid termhood-
unithood measure hence its definition considers statistical information that concerns both
unithood and termhood of terms. For each candidate term t, the c-value score of t, is
calculated using four criteria (Frantzi et al., 2000b): the frequency of t in the corpus; the
frequency of t when it appears nested in other terms longer than t; the number of those
longer terms; and the number of the constituent words of t shown by |t|. The c-value of t
is given by

c-value(t) =

log2 |t|f (t) if t < nested

log2 |t| (f (t) − 1
|Tt |

∑
b∈Tt

f (b)) otherwise
, (3.7)

where Tt denotes the set of all the terms that contain t and are longer than t, and f (s)
denotes the frequency of an arbitary term s in the corpus. The greater the c-value(t), the
more likely t is a valid term.

Following the c-value score, Frantzi et al. (2000b) introduce the nc-value score.
The nc-value score is perhaps one of the first widely employed scores that implements
the idea of terms in context by Pearson (1998). The nc-value score improves the c-value
score by considering the frequency of words surrounding the terms. Frantzi et al. (2000b)
hypothesise that valid term appears with a closed set of neighbour words. Accordingly,
the occurrence of these words around a candidate term is a positive clue that can be used
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in determining the termhood of the candidate term. This idea is implemented with the
help of a function called context weighting factor. First, a set of as context words—which
consists of nouns, adjectives, and verbs that appear in the vicinity of candidate terms—is
extracted. Each word in this set is assigned to a context weight:

weight(w) =
t(w)

n
, (3.8)

where t(w) is the number of terms that w co-occur with, and n is the total number of
candidate terms considered. The weight(w) is then considered to indicate the important
of w as a context word. Subsequently, the nc-value for the term t is computed by

nc-value(t) = 0.8c-value(t) + 0.2
∑
b∈Ct

ft(b)weight(b), (3.9)

where Ct is the set of distinct context words that co-occur with term t, and ft(b) is the
frequency of the co-occurrences of the word b and the term t.

Following the nc-value, Maynard and Ananiadou (2000) introduce the snc-value
score by incorporating further information about the context in which candidate terms
appear. To compute snc-value, Maynard and Ananiadou suggest the use of three kinds
of contextual information: syntactic, terminological, and semantic information. The syn-
tactic information, as its name suggests, is mostly concerned with the distance between
a candidate term and its context words. The terminological information suggests the
use of co-occurrence counts of candidate terms and previously known terms (context
terms). Finally, semantic information takes similarities of context terms into consider-
ation by computing distances between them in a pre-constructed taxonomy of the context
terms—similar to WordNet-based methods such as Wu and Palmer (1994).1

By incorporating contextual information in their implementations (e.g., as implied
by the last few techniques in this section), statistical techniques can go beyond the simple
classic intuitions that are listed in the beginning of this section. Incorporating the con-
textual information in these models not only enhances the performance of methods that
assign unithood and termhood scores to candidate terms, but also enables the design of
methods that can model the semantics of terms. Hence, during the past decade, the ter-
minology extraction methods have leaned further towards the implementation of the idea
of terms in context, often in the form of supervised machine learning techniques. Per-
haps, this is partly due to the availability of the language resources that are required for
implementing this type of methods.

1I would like to draw your attention to the paradigm change in the series of research by Ananiadou in
terminology extraction: from a rationalist approach similar to the GTT in Ananiadou (1994) to empiricist
term in context techniques in Maynard and Ananiadou (2000).



90 Chapter 3. Computational Terminology: Term Extraction and Classification

3.5 Organising Terminologies

Modern approaches to terminology encourage perspectives of terminology management
similar to the way that lexical items are handled in general language. As discussed in
the beginning of this chapter, whereas traditional terminology considers terms as labels
for concept—untouched by context and detached from linguistic characteristics and inter-
pretations—it has become evident that terms, like other lexical units in general language,
are subject to linguistic norms. As suggested by Faber and L’Homme (2014), this lat-
ter perspective is perhaps best characterised by the term lexical-semantic approaches to
terminology, in which conceptual modelling and knowledge representation is one of the
major concerns (see also Buitelaar et al., 2009, for a similar discussion in the context of
ontology engineering).

In order to organise lexical resources, lexical-semantic frameworks identify and
employ a set of semantic relations such as synonymy and hyponymy between words. The
well-known example of such a general lexical resource is WordNet (Miller, 1995). In
WordNet, lexical units are grouped into synsets. Each synset contains a set of synonym-
ous words—that is, words that have a similar meaning. Subsequently, these synsets are
organised into a hierarchy of lexical concepts by defining a hyponym relationship between
them—that is, in simple terms, a type-of or is-a relationship. Lexical items can be grouped
by mechanisms other than synsets (e.g., see Pustejovsky et al., 1993) and organised by a
variety of relationships other than synonym and hyponym relationships between lexical
units (e.g., see Khoo and Na, 2006, for a survey on semantic relations).

Driven by demands in information system, in modern terminology, a similar prin-
ciple is suggested for organising terminological resources. Manual encoding of semantic
relationships between terms, however, is a time-consuming and tedious task. Moreover,
terminological resources are required to be updated frequently; new terms are often in-
troduced and they must be identified and organised in a terminological resource. More
challenges are imminent when other properties of terms, such as their life cycle,1 is con-
sidered (see L’Homme, 2014). Hence, a body of research in terminology mining has paid
attention to the automatic organisation of terminological resources and the identification
of semantic relationships between terms.

Amongst conceivable semantic relationships between terms, the detection of syn-
onym relationships for the identification of term variations, and hyponym relationships for
characterising an organisation of terms in a ‘conceptual structure’ have been at the centre
of attention. The study of research literatures that address the identification of semantic
relationships goes beyond the scope of this thesis. However, to provide a complementary
view on the term classification task investigated in the later chapters, I briefly review re-
search literature that aim for the identification of type-of relationships between terms (see
also L’Homme and Bernier-Colborne, 2012; L’Homme, 2014, for an elaboration of the

1As discussed in the introduction of the thesis, too.
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Category A

Category B
Subcategory Bα

Category C

Candidate Terms

All Combinations of Tokens

Figure 3.8: A Venn diagram that illustrates organisation of terms with respect to their concept
categories. The dashed area shows valid terms. The set of valid terms enfolds several categories
of terms, and each characterise a major concept in knowledge-domain. Hence, the identification
of terms can be seen as the identification of a number of categories of terms. As discussed earlier,
a term may belong to more than one category of concepts. Similarly, a category of concepts may
include several subcategories. Entity recognition and term classification tasks are meant to identify
particular categories of terms—that is, a subset of valid terms.

use of semantic relationships in terminological resources).
Methods that address automatic organisation of terminological resources by identi-

fying a type-of relationship between terms are all similar in the sense that they assume
terms can be organised in several categories to form a taxonomy.1 Each category (taxon)
characterises a group of terms from similar concepts in the domain of study (see Fig-
ure 3.8). For example, in computational linguistics, the terms lexicon and multilingual
corpus can be categorised under the concept category of language resources, while pars-
ing and speech recognition can be categorised under the concept of methods and techno-
logies. Scoring techniques discussed in the earlier sections target distinguishing invalid
candidate terms from valid terms and thus result in terminological resources that have
a flat organisation (as opposed to the structure of taxonomies). To organise terms in an
structure, therefore, an additional classification process is employed.

These classification methods can be distinguished with respect to several factors.
For example, Weeds et al. suggest that these methods can be grouped by the type of
information that they employ. Similar to what is suggested earlier in Section 3.4, Weeds
et al. (2005) identify methods that rely on internal information (i.e., the lexical properties
of the words that constitute terms) or external information (i.e., statistical, contextual, or
ontological information about terms). As discussed earlier, except early works that rely
on internal information, recent methods usually adopt a distributional approach towards
modelling the semantics of terms, hence they often rely on external information or a
combination of both external and internal information.2

From a methodological perspective, Weeds et al. (2005) suggest that the majority

1How these categories are defined and observed is a controversial matter (e.g., see Kilgarriff, 1997) that
goes beyond the scope of this thesis.

2See Chapter 2 of this thesis for an introduction to the distributional methods. Maynard et al. (2008)
articulate the basic idea behind these methods through an example: as a person’s social life can provide
valuable insight into their personality, so we can gather much information about a term by analysing the
company that it keeps.
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of these classification methods employ machine learning techniques in the form of a su-
pervised classification problem. However, other types of methodologies are also possible.
For example, Fukuda et al.’s (1998) PROPER system—a bio-entity tagger—employs a
rule-based method. The use of rule-based methods, however, is hindered by their require-
ments for hand-crafted rules. I extend this study by distinguishing the way that the task
of organising terminologies and the classification method are formulated.

If a prior knowledge of the concept categories is not available, automatic organ-
isation of terminologies can be carried out using a method of clustering. These clustering
methods are unsupervised since no manual effort is required prior to the classification
(clustering) task. These methods suggest an organisation of terms by automatic identific-
ation of a number of concept categories. Recent examples can be found in Bertels and
Speelman (2014); Dupuch et al. (2014, 2012). Terms are first grouped by a measure of
similarity—usually, with the help of a distributional approach. Depending on the applic-
ation context, the obtained clusters of terms can be labelled, which may introduce further
complications to the process. One of the main applications of these methods is ontology
learning, where these clustering techniques can be used as an assistive tool in the process
of ontology engineering.

Concept categories, however, are typically known prior to the extraction of terms
(or, at least, a partial knowledge of them exists). In these scenarios, a typical task is to find
terms that belong to particular concept categories. The most established example of this
kind of task is the identification of terms that correspond to instances of concepts that are
of interest to biologists, namely bio-entity recognition (Nigel et al., 1999). These tasks
rely heavily on manually annotated corpora: each mention of a term and its category-
concept is annotated in a special corpus. The manual annotations are then employed to
develop an entity tagger in a supervised fashion and, often, in the form of a sequence clas-
sifier—for example, using a machine learning technique such as the conditional random
field method, etc. As reported previously, provided that enough training data is available,
it is possible to attain a reasonable performance in these recognition tasks (e.g., see Kim
et al., 2004).

In an alternative use case, the targeted concept categories—similar to entity re-
cognition tasks—are known. However, no manual annotation is available for the training
and development of a term/entity tagger. The lack of language resources is a familiar
problem if a terminological resource with a taxonomic structure must be constructed for
a new domain and only using text (i.e., from scratch). This is a task with many real-world
applications (e.g., see Chakraborty et al., 2014; Anick et al., 2014), which can also be em-
ployed to address ontology population (e.g., see Tanev and Magnini, 2008; Maynard et al.,
2008; Andersson et al., 2014). Lastly, a restored interest in these methods is signalled by
the trending task of cold-start knowledge base population (see Ellis et al., 2012; May-
field et al., 2014). As previously stated, one of the common challenge that these methods
address is the lack of sufficient language resources for the development of classifiers.
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Similar to terminology extraction and in contrast to entity recognition task, in
these methods the communicative context is often the special corpus. Hence, these meth-
ods do not deal with individual term mentions. However, in contrast to terminology re-
cognition techniques (which extracts terms from diverse concept categories in a specific
domain knowledge) and similar to entity recognition, the objective of these methods is
to extract a subset of terms from a similar category of concepts in a specific domain
knowledge. From a lexical-semantic perspective, given a term in a special corpus, these
methods can be used to discover the major senses of the term in the corpus. Therefore,
the outcome can also be beneficial in ontology-based information systems, in which terms
are often used as labels to access concepts. Similarly, these methods can be used for the
knowledge base population using the so-called distant supervision technique (e.g., see
Dredze et al., 2010). As suggested in the introduction chapter, this thesis investigates the
development of a term classification method from this category.

Disregard of the methodology for extracting the term and its concept category,
these methods assume terms have non-compositional semantics. The targeted hyponymy/hy-
pernymy relationships are then modelled as a paradigmatic relationship. The same ap-
proach is often applied to synonymy identification and addressing the problem of term
variation.

3.6 Machine Learning in Terminology Mining

Machine learning techniques have been widely used for extracting terms and construct-
ing organised terminological resources. The extraction of candidate terms—particularly,
complex candidate terms—is expectedly the first juncture that learning methods are util-
ised. In these applications, though implicitly, a learning method is employed to estimate
lexical associations and thus unithood. The simplest example is the use of learning tech-
niques for chunking and extracting nominal phrases. More sophisticated examples of
this kind can be found in the context of multiword expression extraction in which the
extraction of candidate multi-word lexical units often goes beyond extracting nominal
collocations (e.g., see Pecina, 2008).1

Apart from the use of machine learning techniques for bracketing and candidate
term extraction, in the research literature that investigates terminology mining, they are
employed in two additional broad applications.

In the first category, a learning technique is employed to combine various scores
from different sources of information in order to enhance the computed scores for the
extracted candidate terms. Usually, several types of unithood and termhood measures are
merged to synthesise a new score. A classic example in this category is Vivaldi et al.
(2001) in which a term scoring process is enhanced by combining multiple scores using

1Hence, although important in many natural language processing applications, not all the applied meth-
ods for extracting multiword expressing are relevant to terminology mining.
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a boosting algorithm. A more recent research in this line is presented by Hamon et al.
(2014). Hamon et al. suggest a parametrised c-value scoring technique in which the in-
troduced parameters are learned through an optimisation process based on the principles
of Genetic algorithm.

In the next category, as suggested in the previous section, learning methods are
often employed to organise a terminology by identifying co-hyponym relationships, or
comparably, to extract terms that belong to a particular category of concepts (see Fig-
ure 3.8). In most applications, as discussed, the learning techniques are often used in the
form of a supervised classifier. Based on the reasoning shown in Figure 3.3 and apart
from the discussion in the previous section, machine learning-based methods that are em-
ployed in terminology mining can be also grouped by the type of communicative context
that they model.

In the first group, a snippet of text that contains a mention of a candidate term is
assumed to be a sufficient representative of the communicative context. In these applic-
ations, the identification of candidate terms and their corresponding concept categories
are done simultaneously. In the second group, however, the communicative context is the
special corpus. In these methods, the extraction of candidate terms and their Categorisa-
tion are usually, but not necessarily, performed in a two-step procedure. The first group,
understandably, consists of machine learning-based entity recognisers, which aim for the
identification of entity mentions in text. The second subcategory, however, encompasses
methods that are commonly known as term classification methods.

The first group of learning-based methods—that is, entity recognition—is situated
at the convergence point of the automatic term extraction and the classic named entity
recognition (NER) tasks. The goal of NER is to recognise and classify proper nouns and
numerical values into particular classes of entities such as location, organisation, time,
and date (see Mohit, 2014; Nadeau and Sekine, 2007, for a survey on NER). However,
as suggested by Yangarber et al. (2002), these recognition tasks can be generalised to
other types of nominal compounds other than proper nouns. Therefore, techniques that
have been previously applied to NER, have been widely adopted for the recognition of
terms, inasmuch as some research does not differentiate between NER and other term
classification methods (e.g., see Spasić and Ananiadou, 2004). The best examples of these
tasks can be found in molecular biology domain and the task of bio-entity recognition. A
bio-entity recogniser aims to identify mentions of a particular class of biological instances
in text snippets (e.g., see Kim et al., 2004).

Various learning algorithms and a diverse set of features have been proposed to
address the task of bio-entity recognition. For instance, Yamamoto et al. (2003) propose
a system that employs a support vector machine to identify protein names from sentences
in a set of abstracts from scientific publications—that is, from Kim et al.’s (2003) GENIA
corpus. The proposed method relies on several kinds of features: morphological charac-
teristics of candidate terms, the surface form as well as the lemma of the set of words
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that co-occur with candidate terms in the training set, part-of-speech tags and syntactic
information, and features extracted from available dictionaries in the domain. Many more
examples of this kind can be found in biomedical text mining research.

The application of entity recognisers is not limited to the identification of biolo-
gical instances. Kovačević et al. (2012) suggest a method to identify methodology men-
tions in scientific publications and classify them into four categories: tasks, methods,
resources, and implementations. The term recognition and classification are merged and
formalised as a sequence tagging problem using conditional random fields—a classifier
per concept category. In the proposed method, sentences that describe a methodology are
identified. The identified sentences are then passed to each of the trained classifiers in
order to extract text segments that correspond to the methodology mentions. Similarly,
QasemiZadeh et al. (2012) employ support vector machines to extract technical terms.

In the second group—that is, term classification—the process of mapping terms
to concept categories is often modelled as an ad-hoc process. A classic example of this
kind of method is Nigel et al. (1999), in which decision trees are employed to classify
terms extracted from abstracts in the domain of molecular biology. Similarly, Spasić and
Ananiadou (2004) propose another two-step approach for the classification of biomedical
terms. In the proposed approach, terms are first extracted using dictionary look-ups and
c-value and nc-value scoring techniques. The extracted terms are then classified by help
of verb selectional patterns and using a nearest neighbour and genetic algorithm. Like-
wise, Afzal et al. (2008) propose a two-step method; however, for the identification of
terms that signal bioinformatics services and tools and using a different set of features
and learning technique. A similar method and application can be found in Houngbo and
Mercer (2012).

Although in the above-mentioned examples a term classification process follows
a term recognition process to select a subset of valid terms, as suggested by Maynard and
Ananiadou (2001), the recognition and classification process can be merged. In this way,
the scoring process in the term recognition system is replaced by the scoring mechanism
that is implemented by the classifier; hence, candidate terms can be directly assessed and
classified by the term classifier system(e.g., see Foo and Merkel, 2010; Judea et al., 2014).
The type of information that is employed during the classification is what makes these
methodologies different from the entity recognisers. These methods are also different due
to the type of the output that they generate. The entity recognisers mark the boundaries of
terms mentioned in a given sentence or text snippet, whereas the term classifiers are often
used to organise terms in a knowledge structure such as ontologies and thesaurus. As a
result, term classification methods have been widely employed for learning, populating
and extending domain ontologies (e.g., see Wong et al., 2012).

Lastly, a large number of methods proposed for automatic thesaurus construc-
tion are comparable to term classification tasks (e.g., see Navigli and Ponzetto, 2012).
Whereas automatic thesaurus construction deals with the processing of concept hierarch-



96 Chapter 3. Computational Terminology: Term Extraction and Classification

ies in general domain language, terminology classification methods deal with special cor-
pora and sublanguages.

3.7 Evaluation Techniques

Evaluation of the majority of natural language processing systems has posed itself as a
research challenge. Several factors can be named as a barrier to an objective evaluation
of these systems (see Jones and Galliers, 1995, for a full depiction of these problems):

• disagreements on the basic concepts’ definitions—for example, what is semantics?
• complexity of the tasks—for example, how to model a communication system?

how to model users’ background and psychological state? how to measure these
factors and study their influences on the performance of a system?

• a large number of interdependent variables that play a role in the performance of a
system;

• qualitative nature of the evaluation in a number of applications;
• multi-stage, intermediate, or different representations of the output;
• irreproducible evaluation situations and hence outputs;
• and, the absence of a common baseline on which to establish evaluations.

The most widely adopted framework for the evaluation of natural language pro-
cessing tasks, including terminology mining methods, is the evaluation approach pro-
moted in the series of message understanding conferences (MUC) for the assessment of
information extraction systems. The MUC-style evaluation framework emphasises quant-
itative evaluations. This evaluation style accommodates a systematic reproducible assess-
ment of the participating methods, which is methodologically clear and understandable.
In this framework, the evaluation is carried out by comparing system-generated responses
and hand-coded expected outputs (manual annotations) , which is expressed by a quant-
itative scoring measure. Figure 3.9 illustrates the evaluation’s elements and procedure in
this framework.

In an MUC-style evaluation, the most important building blocks are the manually
annotated reference corpus1 and the scoring measure. In the past decades, a number of re-
search initiatives2 and evaluation campaigns3 have resulted in the development of a num-
ber reference corpora and datasets that are successfully employed for the development
and evaluation of language processing techniques. Creating corpora for benchmarking
terminology extraction techniques has been addressed in several research efforts, too.

1As evident, the development of the methods.
2For example, the Expert Advisory Group on Language Engineering Standard (The EAGLES Evalu-

ation Working Group, 1996).
3For example, the series of automatic content extraction evaluation (see http://www.itl.nist.gov/

http://www.itl.nist.gov/iad/mig/tests/ace/
http://www.itl.nist.gov/iad/mig/tests/ace/
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Figure 3.9: MUC-style evaluation for information extraction tasks (Lehnert et al., 1994).

The GENIA corpus is a well-known example of such reference datasets in bio-
text mining: a corpus of 2000 abstracts from scientific publications in biological literat-
ure that is accompanied by the annotations of 100,000 terms organised in a well-defined
ontology (Kim et al., 2003). The Colorado Richly Annotated Full Text Corpus (CRAFT)
is another example of a bio-text mining dataset, which consists of 97 articles from the
PubMed Central Open Access subset annotated with biomedical concepts such as mouse
genes (Bada et al., 2012). In a more recent effort, Bernier-Colborne and Drouin (2014)
report on creating a corpus for the evaluation of term extraction in the domain of automot-
ive engineering. Similarly, Zadeh and Handschuh (2014a) introduce the ACL RD-TEC, a
dataset of manually annotated terms in the domain of computational linguistics.

In quantitative evaluations, precision and recall are the two most widely-used scor-
ing measures. Precision shows the ratio of the correct automatically generated results
against all the information generated by the system. The correct automatically generated
results are often those that match the answer keys provided through the manual annota-
tion. Recall, however, measures the ratio of correct automatically generated information
against all the available information in the reference corpus expected to be generated/ex-
tracted by the system. A combination of these measures such as F-score is used for
scoring the systems. For an automatic term recognition (ATR) system, precision is the
proportion of correct terms in the overall list of extracted candidate terms:

Precision =
number of extracted valid terms

number of candidate terms
. (3.10)

Recall, on the other hand, is the proportion of extracted terms to the complete set of terms
in the corpus:

Recall =
number of extracted valid terms

number of all valid terms in the corpus
. (3.11)

iad/mig/tests/ace/), text analysis conference (http://www.nist.gov/tac/), as well as the series of
workshops on semantic evaluation (http://aclanthology.info/venues/semeval).

http://www.itl.nist.gov/iad/mig/tests/ace/
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And, usually but not necessarily, the F-score is given by

Fmeasure =
2 ∗ Recall ∗ Precision

Recall + Precision
. (3.12)

The use of precision and recall is limited to the availability of manual annotations.
In many real-world applications, manual annotations for all the system generated results
are not available. For example, manual annotations are not available for all the candid-
ate terms generated by an ATR system. In this case, precision thus cannot be computed;
similarly, the complete set of expected information is not available. For example, the
complete set of valid terms in a corpus, which must be extracted by an ATR system, is
unknown; hence, recall cannot be computed. Moreover, in a number of use-cases, other
quantitative aspects of the generated results are required—for example, the number of
valid information items discovered by the system but not annotated/presented in the ref-
erence dataset (e.g., see the evaluation in Roark and Charniak, 1998).1 In these situations,
figures of merit other than precision and recall are employed.

In terminology extraction, one popular measure that often replaces precision and
recall is precision at n (i.e., P@n). Given a sorted list of m candidate terms, precision at
n, n ≤ m, measures the precision (i.e., the number of valid terms |v|) in the list of top n
candidate term that are sorted by the scores assigned by an ATR system:

P@n =
|v|
n
. (3.13)

For example, P@n for n = 10 is the number of valid terms in the list of top 10 candidate
terms sorted by their ATR-computed scores. It becomes evident that if a single number is
used to summarise the performance, then the value of n and m can have a large impact on
the computed performances. Hence, P@n is often replaced by an averaged precision.

Amongst techniques for obtaining an average of precision, non-interpolated aver-
age precision for k valid terms (NAPk) is often used to report the performance of methods
as a single number (e.g., see Zhang et al., 2008; Fahmi, 2009, chap. 4). As suggested
by Schone and Jurafsky (2001), NAPk is given by

NAPk =
1
k

k∑
i=1

Pi, (3.14)

where k is the number of valid terms that are targeted to be seen in the list of sorted
candidate terms, and Pi is the observed precision for pulling out i valid terms. That is,
Pi = i

|Hi |
, in which i is the number of valid terms, and |Hi| is the number of candidate

terms that are required to be checked in order to find this i valid terms. Compared to

1One controversy here is that while the answer keys cannot be used, how to decide whether an inform-
ation item is valid.
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P@k, NAPk signify the distribution of valid terms in the extracted sorted lists of candidate
terms. Depending on the evaluation context, one of these measures is usually used to
show a method’s performance.

3.7.1 Some Evaluation Caveats and Questions

Even with the availability of language resources, MUC-style quantitative evaluation frame-
work cannot always replace qualitative assessments. For instance, depending on the
design principles adopted for the development of reference corpora, quantitative evalu-
ations may not provide proper perspective on the scalability and portability of the sys-
tems participating in an evaluation. In addition, as suggested by Lehnert et al. (1994),
this quantitative assessment cannot be used to assess the time and effort that is required to
develop these systems. Therefore, in a number of occasions, qualitative assessments may
still be required for a comprehensive evaluation.1

A number of critics draw attention to the way the output of a system matches
the provided answer keys in the manual annotations. For example, Esuli and Sebastiani
(2010) suggest that the evaluation of an extraction method can be enhanced by permit-
ting the notion of true negative, incorporating a measure that is sensitive to the degree of
overlap between the correct expected answers and the outputs of the extraction system,
and allowing for multiple correct output. Other researchers go further and question the
basis in which some of the measures such as precision and recall are employed in evalu-
ation scenarios. For instance, Cowie and Wilks (2000) suggest that precision and recall
are designed for information retrieval tasks; hence, they are not appropriate for the eval-
uation of a number of information extraction tasks. For example, in a multi-slot template
filling task, counting correct results can produce some paradoxical outcomes and attention
should be paid to the details of how performance scores are calculated.

Lavelli et al. (2008) address the evaluation of machine learning-based information
extraction systems and the assessment of the ability of these algorithms to learn. Besides
the factors discussed above, the authors argue that establishing an evaluation methodo-
logy and the availability of gold standard corpora do not guarantee a reliable comparison
between different approaches and algorithms. Lavelli et al. suggest that considering the
influential variables in the overall performance of such systems, for example, the number
of features and setting of algorithm-specific parameters, is beneficial for a meaningful
comparison of learning methods.

To avoid a number of barriers to an objective evaluation of information extraction
systems, apart from the intrinsic MUC-style evaluations, extrinsic or indirect evaluation
has been suggested. Extrinsic evaluations measure the quality of the output of a method
by assessing the performance of a third system that employs the generated output. For
example, a common method of extrinsic evaluation for an information extraction system

1This can also be discussed in the context of black box vs. glass box evaluation frameworks.



100 Chapter 3. Computational Terminology: Term Extraction and Classification

is to utilise its output in a document classification problem and assess the extraction task
by studying the precision and recall of the classification task (Yangarber et al., 2000).

As suggested earlier in this section, as with other information extraction tasks, the
evaluation of terminology mining methods is often carried out by comparing the output
of a term extractor against a gold standard dataset, manually checking the output of the
method with the help of a terminologist/a domain-expert, or an extrinsic evaluation such
as the one suggested in Kit et al. (2008).

A number of concerns in the evaluation of terminology mining methods is similar
to those that are listed for other information extraction systems. For instance, the evalu-
ation of perfect and imperfect recognition has been one of the concerns in the evaluation
of ATR systems (e.g., see Lauriston, 1995). Maynard et al. (2008) suggest that in mod-
ern applications, for example, ontology learning, performance metrics such as precision
and recall are not sufficient since they provide a binary decision of correctness—that is, a
term is either right or wrong and nothing in between. Therefore, they suggest the use of
matching techniques that acknowledge partial correctness such as using edit distance as
employed in the balanced distance metric by Maynard (2005) and the SOLD measure by
Spasic and Ananiadou (2005).

However, the complexity of the evaluation of terminology mining methods goes
beyond the common problems such as partial matching. As is rightly argued by Vivaldi
and Rodríguez (2007), in short, the evaluation of these methods inherits its complexity
from the definition of terms. In order to have an overall evaluation of terminologies, Viv-
aldi and Rodríguez suggest that three dimensions of terms’ characteristics, namely, unit-
hood, termhood, and their specialised usage, must first be assessed and then combined.
This multi-faceted characteristic of terms often makes it hard to find an objective judge-
ment when preparing reference corpora, annotating terms, and preparing an evaluation
framework.

Lastly, assuming that all the terms in a corpus are annotated with high confidence,
do all these terms have the same importance in domain-knowledge? Is it ever possible to
introduce a measure to quantify their importance objectively? These are all questions that
still must be addressed in an ideal evaluation framework of terminology mining.

3.8 Summary

In this chapter, terminology extraction methods are reviewed, in the application context of
this thesis in which the use of distributional models will be investigated. The discussion
started with the definition of the term term to highlight the complexity of terminology
mining methods; the wide-range of task that it embraces; and, the wide spectrum of prob-
lems that it encounters.

In Section 3.2, the general two-step mechanism of a typical terminology mining
method is discussed. In Section 3.3, a review of candidate term extraction techniques
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was provided, followed by a study of term scoring methods in Section 3.4. Organising
terminologies was discussed briefly in Section 3.5. This discussion was followed by an
introduction to term classification techniques often used to form co-hyponym groups in
Section 3.6. Finally, this chapter concluded with a brief study of the common practices
for the evaluation of terminology mining methods.

The presented study in this chapter set the background for the proposed co-hyponym
term extraction method in Chapter 5. However, it is worth mentioning that it only scratches
the surface of the vast amount of ongoing research in computational terminology.
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Chapter 4

Random Projections
in Distributional Semantic Models

Random projections are mathematical tools that have been widely used in algorithm
design. They have had a number of significant contributions in several domains, such as
the applications of machine learning techniques to big data. At the expense of negligible
loss in the accuracy of the estimated distances between vectors, these methods reduce
the size of vectors to enhance the performance of processes. In distributional semantic
models, random indexing is one of the widely-used methods that can be understood using
the random projections theorems. In this chapter, the principles of random projections
are employed in order to reintroduce random indexing and propose new dimensionality
reduction methods for the `1-normed spaces.

This chapter starts with recapping the curse of dimensionality problem in dis-
tributional semantic models and enumerating a number of motivations for the proposed
methods in Section 4.1. In Section 4.2, the random indexing technique is explained and
justified mathematically. In Section 4.3, by extending the use of random projections to
`1-normed spaces, a novel technique called random Manhattan indexing (RMI) is intro-
duced. In Section 4.4, RMI and RI are compared, followed by a summary in Seciton 4.5.1

1Section 4.2 is mainly based on QasemiZadeh (2015) and QasemiZadeh and Handschuh (2015). Sec-
tion 4.3.1 and 4.3.2 are based on Zadeh and Handschuh (2014d) and Zadeh and Handschuh (2014e), re-
spectively.
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4.1 Introduction

In order to model any aspect of the meanings in language, distributional semantic models
exploit patterns of co-occurrences. These methods tie the usage context of linguistic entit-
ies (e.g., words and phrases) to their meaning. Hence, meanings are assessed by quantific-
ation of the distributional similarities of linguistic entities. An intuitive, mathematically
well-defined model to represent and process such distributional similarities—amongst
other representation frameworks—is vector space.

Recall from Chapter 2, particularly Section 2.2.1, in a vector space model, each
element ~si of the standard basis (i.e., informally each dimension of the vector space)
represents a context element. Given n context elements, a linguistic entity whose meaning
is being analysed is expressed by a vector~v as a linear combination of ~si and scalars αi ∈ R

such that ~v = α1~s1 + · · · + αn~sn. The value of αi is acquired from the frequency of the co-
occurrences of the entity that ~v represents and the context element that ~si represents. As a
result, the values assigned to the coordinates of a vector, that is, αi, exhibit the correlation
of an entity and the context elements in an n-dimensional real vector space Rn.

In this vector space, similarities of vectors are understood to indicate similarities
of the meanings of linguistic entities that they represent. In order to assess the similarity
between vectors, a vector space V is endowed with a norm structure.1 A norm ‖.‖ is
a function that maps vectors from V to the set of non-negative real numbers, that is,
V 7→ [0,∞). The pair of (V, ‖.‖) is then called a normed space. In a normed space, the
similarity between vectors is assessed by their distances. The distance between vectors is
defined by a function that satisfies certain axioms and assigns a real value to each pair of
vectors, that is,

dist : V × V 7→ R, d(~v,~t) = ‖~v − ~u‖. (4.1)

The smaller the distance between two vectors, the more similar they are.

Amongst several choices, an `2-normed-based metric—such as the Euclidean dis-
tance and the cosine similarity—is an innate choice.

Euclidean space is the most familiar example of a normed space. It is a vector
space that is endowed by the `2 norm. In Euclidean space, the `2 norm—which is also
called the Euclidean norm—of a vector ~v = (v1, · · · , vn) is defined as:

‖~v‖2 =

√√
n∑

i=1

v2
i . (4.2)

Using the definition of distance given in Equation 4.1 and the `2 norm, the Euclidean

1Please note other structures than norm can be employed to assess the similarities.
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distance is measured as:

dist2(~v, ~u) = ‖~v − ~u‖2 =

√√
n∑

i=1

(vi − ui)2. (4.3)

In `2-normed vector spaces, various similarity metrics are defined using different normal-
isation of the Euclidean distance between vectors, for example, the cosine similarity.

A classic Salton et al.’s (1975) document-by-term model is, perhaps, the most fa-
miliar example of the above-described vector space model (VSM). Given n distinct terms
t and a number of documents d, each document di is represented by an n-dimensional
vector ~di = (wi1, · · · ,win), where wi j is a numeric value that associates the document di to
the term t j, for 1 < j < n. For instance, wi j may correspond to the frequency of the terms
t j in the document di. For a collection of m documents, a document-by-term matrix Mm×n

denotes the constructed vector space. Using the bag of words hypothesis, it is assumed
that the relevance of documents can be assessed by counting terms that appear in the doc-
uments, independent of their order or syntactic usage patterns. Documents with similar
vectors are thus assumed to share the same meaning. Using the `2-norm, the similarity
between documents is then calculated by the Euclidean distance or the cosine similarity
shown in Figure 4.1.

As discussed in Chapter 2, when the number of entities in a VSM increases, the
number of context elements employed for capturing similarities between them surges. As
a result, usually high-dimensional vectors, in which most elements are zero, represent
entities. However, when the dimension of vectors in a VSM increases, the discriminatory
power of the VSM diminishes. This results in setbacks known as the curse of dimen-
sionality. Hence, the curse of dimensionality is tackled using a dimensionality reduction
technique.

Dimensionality reduction can be achieved using a number of methods as an auxil-
iary process that is followed by the construction of a VSM—ranging from heuristic-based
selection process to ad hoc matrix factorisation techniques such as singular value de-
composition (see Section 2.3.3). The use of these dimensionality reduction techniques,
however, is hampered by a number of factors.

Firstly, a VSM at the original high dimension must be first constructed. Following
the construction of the VSM, the dimension of the VSM is reduced in an independent
process. The VSM with the reduced dimensionality is thus available for processing only
after the whole sequence of these processes. However, construction of the VSM at its
original dimension is computationally expensive (e.g., all the co-occurrences must be
collected and stored) and the delayed access to the VSM with the reduced dimensionality
is not desirable.

Secondly, reducing the dimension of vectors using the methods listed above is
of high computational complexity. For instance, mapping Rn onto Rm using SVD trun-
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~s1 ↔ t1

~s2 ↔ t2

~s3 ↔ t3

~v

~u

w12

w11

w13

w22w21

w23

θ

Figure 4.1: Illustration of a document-by-term model consisting of 2 documents and 3 terms.
Each element of the standard basis si (i.e., each dimension), represents one of the 3 terms in
the model. The 3-dimensional vectors ~v = (w11,w12,w13) and ~u = (w21,w22,w23) represent the
two documents in the model. The dashed line shows the Euclidean distance between the vectors.
Similarly, the cosine of the angel between the vectors, cos(θ), defines the cosine similarity between
them.

cation demands a process of the time complexity O(n2m) and space complexity O(n2).1

Similarly, in a heuristic-based selection process, the collected frequencies for each of the
context elements must be assessed. Depending on the employed heuristic, this process
can be resource-intensive, too; for example, the collected frequencies are often required
to be sorted by some criteria.

Last but not least, these methods are data-sensitive: if the structure of the data be-
ing analysed changes—that is, if either linguistic entities or context elements are updated,
for example, some are removed or new ones are added—the dimensionality reduction pro-
cess is required to be repeated and reapplied to the whole VSM in order to reflect these
updates. The use of feature selection techniques or truncated SVD, therefore, may not be
desirable in several applications, particularly when dealing with frequently updated big
text-data.

Random projections are mathematical tools that are employed to implement al-
ternative dimensionality reduction techniques that can alleviate the aforementioned prob-
lems. Random projections map high-dimensional vector spaces onto a low-dimension
subspace using matrices consisting of randomly generated vectors that guarantee the pre-
servation of distances between vectors. Hence, random projections are used to design
dimensionality reduction techniques that (a) bypass a number of computations in the clas-
sic dimensionality reduction techniques (e.g., the computation of orthogonal subspaces or
selecting context elements), and (b) merge the dimensionality reduction process into the
process of vector space construction to suggest an incremental—thus scalable—technique

1It is worth mentioning that the use of incremental techniques can relax these requirements to an ex-
tent (e.g., see Brand, 2006).
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for the construction of VSMs directly at a reduced dimensionality.

In the context of distributional semantic models, the widely-employed random
indexing technique can be justified using the mathematical principles of random projec-
tions. Random indexing (RI) is an incremental method for the construction of vector
spaces at a reduced dimensionality. It was first introduced by Kanerva et al. (2000) and
further propounded by Sahlgren (2005). Sahlgren (2005) delineates the RI method as a
two-step procedure that consists of the construction of (a) index vectors and (b) context
vectors.

In the first step, each context element is assigned exactly to one index vector.
Sahlgren (2005) indicates that index vectors are high-dimensional, randomly generated
vectors, in which most of the elements are set to 0 and only a few to 1 and −1. In the
second step, during the construction of context vectors, each target entity is assigned to a
zero vector (i.e., all the elements of the vector are zero) that has the same dimension as the
index vectors. For each occurrence of an entity, which is represented by ~vei , and a context
element, which is represented by ~rck , the context vector for the entity is accumulated by
the index vector of the context element, that is, ~vei = ~vei + ~rck . The result is a vector space
model constructed directly at reduced dimension.

Both Sahlgren (2005) and Kanerva et al. (2000) introduce the random indexing
method in a mathematical framework other than random projections—that is the sparse
distributed memory (SDM).1 The random indexing method was then developed and jus-
tified by Kanerva et al. (2000) as one of the extensions of SDM, without providing a
mathematical justification for the suggested two-step procedure and the method’s para-
meters—that is, the dimension of index vectors and the proportion of zero and non-zero
elements in them.

In the remainder of this chapter, the random indexing technique is revisited and
explained using theorems of random projections, which are refined by advances in statist-
ics. In contrast to the previous delineations of this method, the provided description gives
an understanding of the method which can be used for setting the method’s parameters,
recognising the limits of its use, and extending it to normed spaces other than `2.

In Section 4.2, random projections in Euclidean spaces—hence random index-
ing—is refined using mathematical theorems, which are verified by empirical experi-
ments. Accordingly, Section 4.3 describes random projections in `1-normed spaces, and
introduce the random Manhattan indexing technique—that is, a method similar to RI but
for estimating city block distances. The differences between RI and RMI are reviewed in
Section 4.4. Finally, this chapter concludes with a discussion and summary in Section 4.5.

1For a brief introduction to sparse distributed memory see Kanerva (1993)
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4.2 Random Projections in Euclidean Spaces

In Euclidean spaces, random projections are elucidated by Johnson and Lindenstrauss’s
(1984) lemma (JL lemma). Given an ε, 0 < ε < 1, the JL lemma states that for any set of
p vectors in a high n-dimensional Euclidean space En,1 there exists a mapping onto an m-
dimensional space Em, for m ≥ m0 = O(log p/ε2), that does not distort the distances between
any pair of vectors, with high probability, by a factor more than 1 ± ε. This mapping can
be expressed by

M′

p×m = Mp×nRn×m, m � p, n, (4.4)

where Rn×m is often called the random projection matrix, and Mp×n and M′

p×m denote the
p vectors in En and Em, respectively. According to the JL lemma, if the distance between
any pair of vectors ~v and ~u in M is given by the distEuc(~v, ~u), and their distance in M′

is
given by dist′Euc(~v, ~u), then there exists an R such that

(1 − ε)dist′Euc(~v, ~u) ≤ distEuc(~v, ~u) ≤ (1 + ε)dist′Euc(~v, ~u).2 (4.5)

Instead of the original n-dimensional vector space and at the expense of negligible amount
of error ε, the distance between ~v and ~u can be calculated in the m-dimensional vector
space. Accordingly, since m � n, the time and the space complexity for the computation
of distances can be reduced significantly. The random projection matrix R is stored for
later usages, such as adding new entities to the vector space.

The JL lemma does not specify the projection matrix R. Finding R that satisfy the
JL lemma is therefore the most important design decision when using random projections.
Originally, Johnson and Lindenstrauss (1984) proved the lemma using an orthogonal pro-
jection onto a random m-dimensional subspace of the original vector space. Subsequent
studies simplified the original proof and suggested several choices of R that resulted in
projection techniques with enhanced computational efficiency (e.g., see Dasgupta and
Gupta, 2003, for references). It is proved that a mapping that satisfies the JL lemma
can be obtained, with a high probability, using a random projection R whose entries are
independent and identically distributed (i.i.d.) and have zero mean and constant variance.3

Recently, Achlioptas (2001) shows that a sparse R with an asymptotic Gaussian

1En is an n-dimensional real vector space Rn endowed by the `2 norm.
2In addition, the lemma states that this mapping can be found in randomised polynomial time.
3For the simplicity of theoretical analysis, it is often assumed that entries of R have the standard Gaus-

sian distribution—that is, for each m-dimensional random vector r in R, r ∼ Nm(0, 1). According to the
central limit theorem, the probability distribution of i.i.d. variables that have finite variance approaches a
Gaussian distribution.
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distribution, whose elements ri j are defined as

ri j =
√

s


−1 with probability 1

2s

0 with probability 1 − 1
s

1 with probability 1
2s

, (4.6)

for s ∈ {1, 3}, results in a mapping that also satisfies the JL lemma.1

Subsequent research showed that R can be constructed from even sparser vectors
than what is suggested in Achlioptas (2001) (e.g., see Li et al., 2006b; Matous̆ek, 2008).
Specifically, Li et al. (2006b) has proved that in a mapping of an n-dimensional real vector
space by a sparse R, the JL lemma holds as long as s = O(n), for example, s =

√
n or

even s = n/log(n).

Using a sparse R that is given by Equation 4.6 reduces the number of multiplic-
ation operations in Equation 4.4 by the factor 1

s and thus speeds up the mapping pro-
cess—that is, the computation of M′

. The larger the value of s, the sparser the random
vector is; hence, at the expense of insignificant loss in the accuracy of the estimated
distances, it is expected that the succeeding processes will be faster. Moreover, the mul-
tiplication of the scaling factor

√
s can be postponed until after the mapping, or when it

is necessary. Floating-point arithmetic operations, therefore, can be avoided during the
computation of the mapping, which consequently enhances the computational as well as
the memory complexity. Nonetheless, to say that a sparse R requires less space for its
storage.

Apart from the sparse mapping, another major benefit when computing M′ is
obtained using the linearity of matrix multiplication. Each vector ~vei in the original n-
dimensional space, that is, ith row of M, can be represented as a weighted sum of the
basis vectors

~vei = wi1~sc1 + wi2~sc2 + · · · + win~scn , (4.7)

where wi j, i ≤ p and j ≤ n are derived from the frequency of the co-occurrences of the
entity and context element that ~vei and ~sck represent, respectively. By the basic properties
of the matrix multiplication, the projection of ~vei in M′ is given by

~v
′

ei
= ~veiR = wi1~sc1R + wi2~sc2R + · · · + win~scnR. (4.8)

In turn, since, by definition, all the elements of the standard basis ~sck are zero except
the kth element, which is equal to 1, the statement given in Equation 4.8 can be equally
written as

~v
′

ei
= wi1~r1 + wi2~r2 + · · · + win~rn, (4.9)

1The mapping in Equation 4.6 guarantees that distances are preserved with a probability of at least
1 − p−γ, for some γ > 0 (see Achlioptas (2001), for proof and explanation.)



112 Chapter 4. Random Projections in Distributional Semantic Models

where ~r j is the jth row of R. Equation 4.9 means that row vectors ~v
′

ei
, thus M′, can

be computed directly without necessarily constructing the whole matrix M. From one
perspective, the jth row of Rn×m represents a context element in the original vector space
that is located at the jth column of Mp×n.1 Therefore, a vector representation of an entity
at a reduced dimension can be computed directly by accumulating the row vectors of R
that represent the context elements that co-occur with the entity.

4.2.1 Improving the RI Algorithm: An Outcome of the Exposition

The RI technique can be reintroduced using the mathematical explanations given in the
previous section. As can be understood, the RI technique can be seen as a dimensionality
reduction technique for Euclidean spaces. RI implements a random projection that em-
ploys a random matrix R with an asymptotic Gaussian distribution (as it is expressed by
Equation 4.4). The construction of index vectors—that is, the first step of RI—is equi-
valent to the construction of the random projection matrix R, whose elements are given
by Equation 4.6. Each index vector is a row of the random projection matrix R. The
second step of RI, the construction of context vectors, deals with the computation of M′

.
Each context vector is a row of M′

, which is computed by the iterative process justified in
Equation 4.9.

While in previous research the parameters of the RI method are left to be decided
entirely through experiments (e.g., see Lupu, 2014; Polajnar and Clark, 2014), the adop-
ted mathematical framework can be leveraged to provide a guideline for setting the RI’s
parameters. Using the JL lemma, a criterion for choosing the dimension of vector spaces
constructed by the RI method at the reduced dimensionality (i.e., m in Equation 4.4) and
the number of zero and non-zero elements in index vectors (i.e., s in Equation 4.6) are
suggested.

In a VSM constructed using RI at a reduced dimensionality, the degree of pre-
servation of distances between vectors in the original high dimension and at the reduced
dimensionality m is determined by the number of vectors in the model and m. If the num-
ber of vectors (i.e., the number of entities that are modelled in the VSM) is fixed, then
the larger m is, the better the Euclidean distances will be preserved at the reduced dimen-
sion m. In other words, the probability of preserving the pairwise distances increases as
m increases. However, from the computational perspective, the lower the value of m is,
the less computation is required for the construction of the VSM and the calculation of
the distances, and therefore the better the efficiency is. From this perspective, the choice
of dimensionality in RI-constructed VSMs is a trade-off between efficiency and accur-
acy. Similarly, the value of m can be seen as the capacity of a RI-constructed VSM for
accommodating new entities. Therefore, compared to m = 4000 suggested in Kanerva
et al. (2000) or m = 1800 in Sahlgren (2005), depending on the number of entities that

1Informally, the jth dimension of the original n-dimensional vector space.
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are modelled in an experiment, m can be set to a smaller value such as m = 400.
The discussion above can be approached by investigating the distribution of the

pairwise distances in the original high-dimensional vector space and the constructed vec-
tor space using RI (see also Stein, 2007). If the pairwise distances in the original space
are and relatively small, then in order to be able to distinguish them, the distortion of the
pairwise distances at the reduced dimensionality must be small (i.e., ε in Equation 4.5). If
the number of entities in the model is fixed, then the distortion of the pairwise distances
reduces when m increases. Hence, the distribution of the pairwise distances is a factor
that can influence the chosen value for m.

Based on the results reported in Li et al. (2006b), when embedding an n-dimensional
vector space onto a vector space of a reduced dimensionality m, the JL lemma holds—that
is, pairwise Euclidean distances between vectors are preserved—as long as s in Equation
4.6 is O(n). In text processing applications, the number of context elements and thus the
dimension of vector spaces (i.e., n) is often very large. When using the random indexing
method, therefore, even a careful choice such as s =

√
n in Equation 4.6 results in very

sparse random index vectors. In most text processing applications, therefore, by setting
only 2 or 4 non-zero elements in index vectors, distances in the RI-constructed model
resemble distances in the high n-dimensional model (for the mathematical proofs, see Li
et al., 2006b, Appendix B).

It is worth reminding that if the dimension of index vectors (i.e., m) is fixed, then
increasing the number of non-zero elements in index vectors causes additional distor-
tions in the pairwise Euclidean distances. For index vectors of fixed dimensionality m,
if the number of non-zero elements increases, then the probability of the orthogonality
between index vectors decreases (see examples from a simulation in Figure 4.2). Hence,
an increase in the number non-zero elements while m is fixed can stimulate distortions in
pairwise distances. However, it is important to note that causing distortions in the pair-
wise distances can be beneficial; for example, it may reduce the effect of noise and foster
assortment of similar context elements. As a result, distortions in the pairwise distances
can be favourable in a number of applications.

To verify the theoretical explanations given above, the discussion continues by
reporting the observed empirical results from a set of experiments in the next section.

4.2.1.1 Setting the parameters of RI: Empirical observations

Instead of a task-specific evaluation, the ability of RI-constructed vector spaces in pre-
serving pairwise Euclidean distances is shown when the method’s parameters are set dif-
ferently.

In the reported experiments, a subset of Wikipedia articles, which are chosen ran-
domly from the WaCkypedia_EN corpus—that is, a 2009 dump of the English Wikipe-
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Figure 4.2: Orthogonality of index vectors: the y-axis shows the proportion of non-orthogonal
pairs of index vectors (denoted by P6⊥) for sets of index vectors of various dimension m =

100, 1000, and 2000 obtained in a simulation. For sets of index vectors of a fixed size n = 104,
the left figure shows the changes of P 6⊥ when the number of non-zero elements increases. The
right figure shows P6⊥ when the number of non-zero elements is fixed to 8, however, the number
of index vector n increases. As shown in the figure, P 6⊥ remains constant independently of n.

dia (Baroni et al., 2009)—are used.1 A document-by-term VSM at its original high di-
mension is first constructed from a set of 10,000 articles (shown by D). A pre-processing
of documents in D—that is, white-space tokenisation followed by the elimination of
non-alphabetic tokens—results in a vocabulary of 192,117 terms. Each document in D
is represented by a high-dimensional vector; each dimension represents an entry from
the obtained vocabulary (as illustrated earlier in Figure 4.1). Therefore, the constructed
VSM using this classic one-dimension-per-context-element method has a dimensionality
of n = 192,117.2

To keep the experiments in a manageable size, each document d in D is randomly
grouped by another 9 documents from D, which consequently gives 10,000 sets of a set of
10 documents. Using the constructed n-dimensional (n = 192,117) vector space, for each
set of documents, the Euclidean distances between d and the remaining 9 documents in
the set are computed. Subsequently, these 9 documents are sorted by their distance from
d to obtain an ordered set of documents. The process therefore results in 10,000 ordered
sets of 9 documents. The Euclidean distance is replaced with the cosine similarity and
repeat the processes mentioned above. Figure 4.3 shows a histogram of the distribution
of the distances between documents in these sets of documents. Figure 4.4 shows the
distribution of the pairwise distances for all of the 10,000 documents; as shown, the dis-
tribution of the sampled distances closely resembles the distribution of all the pairwise
distances in the model.

The procedure described above is repeated, however, by calculating distances in
VSMs that are constructed using the RI method. Each term in the vocabulary is assigned

1The corpus can be obtained from http://wacky.sslmit.unibo.it/doku.php?id=corpora.
2In all the performed experiments, the frequency of terms in documents is used to indicate weights in

corresponding vectors.

http://wacky.sslmit.unibo.it/doku.php?id=corpora
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Figure 4.3: A histogram of the distribution of (a) the Euclidean distances and (b) the cosine simil-
arities between pairs of vectors in the VSM of dimension 192,117 that are sampled randomly and
employed for the experiments.

to an m-dimensional index vector and each document to a context vector. Context vectors
are updated by accumulating index vectors to reflect the co-occurrences of documents
and terms. Subsequently, the obtained context vectors are used to estimate the Euclidean
distances and the cosine similarities between documents. The estimated distances are then
used to create the ordered sets of documents, exactly as explained above. This process
is repeated several times when the parameters of RI—that is, the dimension m and the
number of non-zero elements in index vectors—are set to different values.

It is expected the relative Euclidean distances as well as the cosine similarities
between documents in the RI-constructed VSMs to be the same as in the original high-
dimensional VSM.1 Hence, the ordered sets of documents obtained from estimated dis-
tances in the RI-constructed VSMs must be identical to the corresponding sets that are
derived using the computed distances in the original high-dimensional VSM. For each
VSM constructed using the RI method, therefore, the resulting ordered sets are compared
with the obtained ordered sets from the original high-dimensional VSM using the Spear-
man’s rank correlation coefficient measure (ρ).

The Spearman’s rank correlation coefficient evaluates the strength of an associ-
ation between two ranked variables, that is, two lists of sorted documents in our exper-
iments. Given a list of sorted documents obtained from the original high-dimensional
VSM (listo) and its corresponding list obtained from a VSM constructed using the RI
method (listRI), Spearman’s rank correlation for the two lists is given by

ρ = 1 −
6
∑

dif 2
i

n(n2 − 1)
, (4.10)

1The preservation of the cosine similarities can be verified mathematically, for example, see the
provided proofs in Kaski (1998). Simply put, the cosine similarity can be expressed using the Euclidean
distance when the length of vectors is normalised to unit length. This simple fact can be used to show that
the cosine similarities are preserved when using the RI method.
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Figure 4.4: A histogram of the distribution of all the pairwise distances in the VSM of dimension
192,117 for (a) the Euclidean distances and (b) the cosine similarities.
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Figure 4.5: Correlation between the estimated Euclidean distances in RI-constructed vectors
spaces and the original high-dimensional vector space: ρ̄ shows the average of the Spearman’s
rank correlation coefficient between the ordered sets of documents that are obtained using the RI-
constructed vectors spaces and the original high-dimensional vector space. Results are shown for
both Euclidean distances as well as the cosine similarities when parameters of the RI method are
set to different values.

where dif i is the difference in paired ranks of documents in listo and listRI , and n = 9 is the
number of documents that are sorted in each list. The average of ρ over the obtained sets
of ordered set of documents (ρ̄) is reported to quantify the performance of RI with respect
to its ability to preserve `2-normed distances, when its parameters are set to different
values: the closer ρ̄ is to 1, the more similar the order of documents in an RI-constructed
and the original high-dimensional VSM.

Figure 4.5 shows the obtained results. Since the dimension of the original vector
space is very high, 2 non-zero elements per index vector are sufficient to construct a vector
space that resembles relative distances between vectors in the original high-dimensional
vector space, even for m = 1600. In addition, because only a small number of docu-
ments—that is, p = 10000—are modelled, even at the reduced dimension of m = 100,
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Figure 4.6: Distribution of distances in the RI-constructed VSMs: as m increases, the distribu-
tion of the distances in the RI-constructed VSMs are becoming more similar to the distances’
distribution in the original high-dimensional VSM.

the estimated distances in the RI-constructed vector space shows a high correlation to the
distances in the original vector space (i.e., ρ̄ > 0.92 for pairwise Euclidean distances and
ρ̄ > 0.82 for the cosine similarity). As expected, the generated random baseline for ρ̄ in
Figure 4.5 is −0.002, that is, approximately 0. For m = 1600, the observed pairwise dis-
tances in the RI-constructed vector space are almost identical to the original vector space,
that is, ρ̄ > 0.99 for Euclidean distances and ρ̄ > 0.96 for the cosine. Figure 4.6 compares
the distribution of distances in the original high-dimensional VSM and the RI-constructed
VSMs. As expected, when m increases, these distributions are becoming more similar to
each other.

4.2.2 Related Work and Other Justifications of RI

As cited by Sahlgren (2005), the RI method was inspired from Kanerva’s sparse distrib-
uted memory (SDM).1 SDM, which was initially designed as a model of human long-term
memory, is a cognitive-mathematical model. To formalise computation in several applic-
ations, it employs a high-dimensional binary vector space, the Hamming distance, as well
as mathematical theorems that are often used in neural networks.2 The RI method was
then developed and justified by Kanerva et al. as an extension of SDM, without provid-
ing mathematical details, which are provided here. 3 An impression similar to Kanerva

1Perhaps more comprehensible than the JL lemma
2Recently, Snaider (2012, Chap. 2) has provided a summary of the SDM’s mathematical foundation,

and compared it with other mathematical models.
3Neither Sahlgren (2005) nor Kanerva et al. (2000) specify the proportion of the zero and non-zero

elements in the index vectors, except that most of the elements of the index vectors are zero and only a few
are 1 and −1. For instance, Kanerva et al. (2000) suggest 10 non-zero elements for a 4000-dimensional
index vector without providing further explanation. Although Sahlgren and Karlgren (2005) suggest the
following distribution (which can also be found in Sahlgren, 2006, chap. 4) for the elements of the index
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et al.’s (2000) RI can also be found in the methods suggested by Gallant (e.g., see Gallant,
1991).1

An account of random projection in Euclidean spaces similar to RI can be given
following Kohonen’s seminal work on self-organising maps (e.g., see Ritter and Kohonen,
1989, Appendix I). For instance, Kaski (1998) introduces random mapping, a dimension
reduction technique that employs random projections in Euclidean spaces. Instead of
the JL lemma, Kaski (1998) relies on the fact that the least distortion in a mapping in a
Euclidean space, such as Equation 4.4, is attained when R is orthogonal. Using reported
results in Hecht-Nielsen (1994), Kaski assumes that randomly created vectors are most
likely to be orthogonal and suggests mapping by a random matrix constructed by i.i.d.
random vectors r ∼ Nm(0, 1).2 He then shows that the distortion in the inner product
of pairs of vectors at reduced dimension is on average zero and its variance is less than
2/m. Several other theorems and proofs, which give similar results to the JL lemma, can
be found to explain the use of random projection for dimension reduction in Euclidean
spaces in various applications (e.g., see Linial et al., 1995; Arriaga and Vempala, 2006).3

The viability of the random projection techniques in general, and the RI method
specifically, have been verified in several research reports. Amongst them, experimental
results reported by Bingham and Mannila (2001) admit that the dimension reduction using
the suggested sparse random matrix in Achlioptas (2001) provides comparable results to
the conventional dimension reduction techniques, such as truncated SVD, in a document
similarity measurement application. In addition, a growing number of research in diverse
application domains employ the RI technique for dimension reduction (e.e., see Jurgens
and Stevens, 2009, 2010; Musto et al., 2012; Yannakoudakis and Briscoe, 2012).

Apart from setting the RI method’s parameters, the proposed theorems in Sec-
tion 4.2 enable us to (a) categorise methods employed for incremental VSM construction
at a reduced dimensionality, and (b) provide mathematical justifications for several vari-
ations of the RI method proposed in research literature. First and foremost, incremental
methods can be categorised based on the type of projections that they employ to con-

vectors:

ri j =


+1 with probability β/2

m

0 with probability m−β
m

−1 with probability β/2
m

, (4.11)

they do not provide a criterion for choosing the values of m and β. The given distribution in Equation 4.11
expresses the probability of non-zero elements in terms of the dimension of the index vectors (i.e., m), and
the number of non-zero elements (i.e., β). In this way, the degree of the sparsity of index vectors is shown
by the probability of the non-zero elements.

1For an algorithmic description of these methods in a retrieval task see Caid and Oing (1997) and its
references.

2Similar conclusion is drawn for the RI technique.
3Resulting from the popularity of connectionist methodology in late 80s and early 90s, the list of

research that propose similar methodologies is very long. Giving a comprehensive view of this research
effort is beyond the scope of this thesis. Interested readers can perhaps gain insight by following a citation
network, for example, by starting from Pollack (1990) or any of the references listed in this section.



4.2. Random Projections in Euclidean Spaces 119

struct VSMs at a reduced dimensionality (hence, the type of similarity metrics that they
estimate). Despite that in natural language processing applications, the majority of these
methods suggest the use of Gaussian random projections for estimating `2 norm-based
similarities, a few researchers suggest random projections other than Gaussian to estim-
ate similarities in VSMs other than `2-normed (e.g., see TopSig by Geva and De Vries
(2011) and the random Manhattan indexing method proposed later in this chapter).

If a method based on random projections is employed to construct `2-normed
VSMs, then its underlying mathematical principles is similar to RI1; hence, this method
can be categorised in the same group of methods as RI. The major differences between
methods in this category often result from (a) the procedure that they employ to construct
a VSM at a reduced dimensionality (i.e., the second step of the RI procedure as explained
from Equation 4.7 to 4.9) and/or (b) the weighting methodology that they employ in order
to smooth collected co-occurrence frequencies.2 The weighting process can be combined
with the context vector construction, too.

As suggested earlier, the context vector construction can be carried out using a
sequential scan of a corpus. The sequential scan, however, can be tailored to meet the
requirements of a particular application. For example, context vectors can be updated
every time the corpus is updated. Similarly, the weighting strategy can be changed to
serve a specific purpose. Both of the alterations can take place by an intuitive or cognitive
perspective, which may seem different from the RI technique. However, as long as substi-
tuted strategies can be interpreted using theorems suggested in Section 4.2, the resulting
methods are, in essence, equivalent to the mapping that is given by the RI technique. In
this case, the resulting vector space at reduced dimension still conforms to what is stated
here for the RI-constructed VSMs.

The incremental semantic analysis (ISA) method, which is proposed by Baroni
et al. (2007), and the reflective random indexing method, which is proposed by Cohen
et al. (2010), are examples of the techniques discussed in the above paragraph. These
methods offer interesting intuitions, other than the RI method, in order to enhance the
results obtained for semantic similarity measurements in some applications. However, in
both of these methods, the strategy employed for the construction of VSMs at reduced di-
mensionality can be interpreted as a technique for the adjustment of wi j weights in Equa-
tion 4.4. Therefore, both methods are essentially the same as the RI method described
here—that is, random projection with a sparse asymptotic Gaussian random matrix. For
example, it can be verified that Baroni et al.’s (2007) ISA technique integrates a Laplacian
smoothing to the RI’s two-step procedure.

1Or, can be equivalently represented as.
2A description of the weighting process in VSMs is given in Chapter 2).
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4.2.3 RI’s Advantages Versus Limitations

The RI technique reduces the time and the space complexity of the required processes for
constructing a VSM with regards to the values of

• n and m in Equation 4.4—that is, the original dimension of VSM and its reduced
dimension obtained using RI, respectively;

• s in Equation 4.6—that is, the proportion of zero and non-zero elements in index
vectors.

When using a sparse matrix representation, compared to a classic one-dimension-per-
context VSM construction technique, the RI method imposes an additional β− 1 addition
operations, where β is the number of non-zero elements in index vectors. However, this
additional computation is insignificant considering the fact that RI combines the construc-
tion of a vector space with the dimension reduction processes. RI eliminates the need for a
resource-intensive dimension reduction technique, such as the truncated SVD. Evidently,
by reducing the dimension of the vector space, RI enhances the time complexity of the
process of measuring distances between vectors by an approximate factor of n

m . As sug-
gested earlier, the use of sparse projections further enhances the time complexity of the
construction of VSM by a factor equal to 1

s , and, to an extent, the space complexity for
storing and manipulating VSMs.

In many dimension reduction techniques other than random projection, the pro-
jection subspace is devised by the analysis of data in the original high-dimensional VSM.
For instance, in order to employ truncated SVD, a linear equation that finds eigenvectors
should be solved. Therefore, in these methods, if the structure of the data being ana-
lysed changes, the basis of the projection subspace also changes. Additionally, in such
data-sensitive dimension reduction techniques, the vector space at the reduced dimen-
sion—thus, similarity assessments—is only available after the computation of the trans-
formation and applying it to the data at the original high dimension. Both stipulations
impose limitations when using a data-sensitive dimension reduction technique, which the
RI method can resolve.

The first limitation is faced when updating a vector space that is followed by a
data-sensitive method of dimensionality reduction. In this setup, updating the vector space
results in cumbersome processes. The process of dimensionality reduction needs to be re-
peated in order to reflect the changes in the model. For example, the use of the truncated
SVD demands the recalculation of the eigenvectors, and therefore the alternation of the
transformation process, which affects all the vectors in the model at reduced dimension.
As a result, a process such as distance computation should be repeated for all the vector
space entries. However, in the RI technique, the employed subspace for dimension re-
duction, to a great extent, is independent of the data structure. Updating the vector space
is carried out by the accumulation of existing or new index vectors, which affects only
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certain vectors. Thus, processes such as distance calculation are only necessary for the
affected vectors.

The second limitation of a data-sensitive dimension reduction technique is that
vector space at reduced dimension is available for processing only after the computation
of the transformation. In contrast, when using the RI method, vector space at reduced
dimension is available for processing during the construction of the vector space. As a
result, similarity assessment is feasible at any time during the vector space construction,
even when all the occurrences of entities in contexts are not observed. This is an extra
advantage when processing frequently updated information, such as text streams in social
media (e.g., see Sahlgren and Karlgren, 2009; Jurgens and Stevens, 2009; Karlgren et al.,
2012).

The dimension of a vector space constructed using the RI method is fixed and,
to a great extent, independent of the number of employed contexts and the size of cor-
pus. However, the dimension of the vector space in a one-dimension-per-context model
increases when new contexts are required to be added to the model. In a distributional
model of semantics, due to the power-law distribution of context elements, appending a
new entity to a model often requires appending new context elements to the model. The
new entity most likely appears in/with context elements that have not yet appeared in the
model. Therefore, in order to keep the model updated, its dimension should be increased
to encompass new appended context elements. In contrast, in the RI technique, a large
number of new context elements can be easily added to a vector space without changing
its dimension, but at the expense of an insignificant loss of accuracy, which can be estim-
ated by the JL lemma. A new context is defined and appended to the model simply by
defining a new index vector.

The fixed dimensionality of the vector space constructed by RI and advance know-
ledge of its value are major advantages when dealing with big data, particularly in dis-
tributed computing frameworks. As described above, the induced vector space models
using a technique such as the RI method scale up linearly with respect to the number of
entities and not the number of contexts. In addition, the prior knowledge of the vectors’
dimension is advantageous for load balancing in distributed computing frameworks (e.g.,
see Gufler et al., 2012, for an explanation of the load balancing problem).

The RI technique, however, comes with a number of limitations, which can be
inferred from the proposed mathematical understanding of RI. The mathematical justific-
ation given in Section 4.2 explicitly states that the RI method, which employs a random
matrix R whose elements are defined using the asymptotic distribution given in Equation
4.6, can only be applied for the approximation of similarity measures in the `2 normed
spaces. That is, RI can be employed if similarity measures are derived from the `2 norm
such as the Euclidean distance and the cosine similarity. For instance, the use of RI-
constructed VSMs for estimating the city block distances between vectors—for example,



122 Chapter 4. Random Projections in Distributional Semantic Models

as suggested in Lapesa and Evert (2013)—is not justified, at least mathematically.1

This list of the advantages and disadvantages is not exhaustive and new items can
be added or removed according to the application context or the comparison framework.

4.2.4 A Summary of the Exposition’s Outcomes

In Section 4.2, the use of Gaussian sparse random projections for dimension reduction
in Euclidean spaces is described, which consequently arrives at the well-known random
indexing technique. Accordingly, in Section 4.2.1.1, observed results in an empirical ex-
periment are shown to understand the method’s behaviour with respect to its ability to
preserve pairwise Euclidean distances, or in general `2-normed-based similarity meas-
ures. In addition, several important outcomes from the mathematical description of the
RI method are emphasised.

Firstly, whereas the original delineation of the method did not provide a concrete
guideline for setting the method’s parameters, Section 4.2.1 ameliorates the previous two-
step procedure with criteria for choosing the dimensionality as well as proportion of zero
and non-zero elements of index vectors.

Secondly, the proposed understanding of the RI method is employed to discern
its limitations and application domain. It is proven that the employed random projec-
tions by the RI method do not preserve distances other than `2 (e.g., see Brinkman and
Charikar, 2005). Hence, it is important to note that RI-constructed VSMs can only be
used for estimating similarity measures that are derived from the `2 norm—for example,
the Euclidean distance and the cosine similarity.

Thirdly, the rationale given in the aforementioned sections provides a framework
to justify several variations of the RI technique mathematically. Although these methods
are based on plausible intuitions, similar to RI, they lack theoretical justifications. For
example, the given mathematical description can be employed to identify the method
proposed in Baroni et al. (2007) as a variation of RI that employs Laplacian smoothing.
Similarly, the same rationale can be used for categorisation of the methods that construct
VSMs at a reduced dimensionality. This idea can be generalised to coordinate all other
major processes that are often involved when using VSMs.

Lastly, the given understanding of the mechanism of RI can be employed to gener-
alise RI to normed spaces other than `2. This generalisation can be achieved using random
projections with a distribution other than asymptotic Gaussian—for example, as sugges-
ted in Indyk (2006); Li et al. (2013)—and altering Equation 4.6. Accordingly, in the next
section, the random Manhattan indexing is proposed for constructing `1-normed VSMs
incrementally and directly at a reduced dimensionality.

1For example, see proofs in Brinkman and Charikar (2005). Also, see the reported empirical observa-
tions in Section 4.4.
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Figure 4.7: The sum of the dash-dotted lines is the Manhattan distance between the two vectors
~v1 = (w11,w12,w13) and ~v2 = (w21,w22,w23). Whereas the Euclidean distance between the two
vectors is the length of the straight line between them (the dashed line), the Manhattan distance
between the two vectors is the sum of the absolute differences of their coordinates.

4.3 Random Projections in `1-Normed Space

As stated earlier, in a vector space, the similarity between vectors can be assessed using
a norm structure. Besides the `2 norm, `1 norm is another not so common choice for the
similarity measurement. The `1 norm for ~v is given by:

‖~v‖1 =

n∑
i=1

|vi|, (4.12)

where |.| signifies the modulus.1 Expectedly, a vector space endowed with the `1 norm
is called an `1-normed space. The distance in an `1-normed vector space is often called
the Manhattan, taxicab, or the city block distance. According to the definition given in
Equation 4.1, the Manhattan distance between two vectors ~v and ~u is given by:

dist1(~v, ~u) = ‖~v − ~u‖1 =

n∑
k=1

|vi − u j|. (4.13)

Shown in Figure 4.7, the collection of the dash-dotted lines is the `1 distance between the
two vectors. Similar to the `2-normed spaces, various normalisations of the `1 distance2

define a family of `1-normed similarity metrics.
Similar to `2-normed spaces, the curse of dimensionality can obstruct efficient

computation in `1 normed spaces. Both heuristic-based and transformation-based dimen-

1The definition of the norm is generalised to `p spaces with ‖~v‖p =
(∑

i |vi|
p)1/p; the discussion about

`p-normed spaces other than p = 1, 2 goes beyond the scope of this thesis.
2As long as the axioms in the distance definition hold.
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sionality reduction techniques can also be employed to alleviate the curse of dimension-
ality in `1-normed spaces. For example, similar to SVD truncation in `2-normed spaces,
matrix factorisation techniques that guarantee the least distortion in the `1 distances can
be employed (e.g., see Kwak, 2008). However, as discussed in Section 4.1, these meth-
ods are not desirable in a number of applications; for example, due to the resources they
demand for computing VSMs at a reduced dimensionality, delays that they may cause
in accessing VSMs at a reduced dimensionality, and frequent changes in the structure of
data in VSMs. Accordingly, it is stated that random projections can be used to implement
alternative dimensionality reduction techniques that can alleviate these problems.

In Euclidean spaces, random projections can be employed to introduce the RI
technique. RI solves the problems stated above by combining the construction of a vec-
tor space and the dimensionality reduction process. Unlike methods that first construct a
VSM at its original high dimension and conduct a dimensionality reduction afterwards,
the RI method avoids the construction of the original high-dimensional VSM. Instead, it
merges the vector space construction and the dimensionality reduction process. RI, thus,
significantly enhances the computational complexity of deriving a VSM from text. How-
ever, the application of the RI technique (likewise, the standard truncated SVD in LSA) is
limited to `2-normed spaces, that is, when similarities are assessed using a measure based
on the `2 distance. It is verified that using RI causes large distortions in the `1 distances
between vectors (Brinkman and Charikar, 2005). Hence, the RI technique is not suitable
for constructing VSMs if similarities are computed using the `1 distance.

Depending on the distribution of vectors in a VSM, the performance of simil-
arity measures based on the `1 and the `2 norms varies from one task to another. For
instance, it is suggested that the `1 distance is more robust to the presence of outliers and
non-Gaussian noise than the `2 distance (see the problem description in Ke and Kanade,
2003)). Hence, the use of the `1 distance can be more reliable than the `2 distance in
certain applications. For instance, Weeds et al. (2005) suggest that the `1 distance out-
performs other similarity metrics in a term classification task. In another experiment, Lee
(1999) observed that the `1 distance gives more desirable results than the cosine and the
`2 measures.

In this section, a novel method called random Manhattan indexing (RMI) is intro-
duced, which employs random projections in `1-normed spaces. RMI constructs a VSM
directly at a reduced dimension while it preserves the pairwise `1 distances between vec-
tors in the original high-dimensional VSM. A computationally enhanced version of RMI
called random Manhattan integer indexing (RMII) is then introduced. RMI and RMII,
using the similar principles employed by RI, merge the construction of a VSM and di-
mension reduction into an incremental—thus, efficient and scalable—process. In Section
4.3.1, the RMI method is explained and evaluated. In Section 4.3.2, the RMII method is
explained. RMI and RMII are compared to RI in Section 4.4.
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4.3.1 Random Manhattan Indexing

In this section, the Random Manhattan Indexing (RMI) method is proposed: an algorithm
that adapts random projections in order to introduce an incremental procedure for con-
structing `1-normed vector spaces at a reduced dimensionality. The RMI method employs
a two-step procedure: (a) the creation of index vectors and (b) the construction of context
vectors.

In the first step, each context element is assigned exactly to one index vector ~ri.
Index vectors are high-dimensional and generated randomly such that entries r j of index
vectors have the following distribution:

ri =


−1
U1

with probability s
2

0 with probability 1 − s
1

U2
with probability s

2

, (4.14)

where U1 and U2 are independent uniform random variables in (0, 1). In the second
step, each target linguistic entity that is being analysed in the model is assigned to a
context vector ~vc in which all the elements are initially set to 0. For each encountered co-
occurrence of a linguistic entity and a context element—for example, through a sequential
scan of an input corpus—~vc that represents the linguistic entity is accumulated by the
index vector ~ri that represents the context element—that is, ~vc = ~vc + ~ri. This process
results in a VSM of a reduced dimensionality that can be used to estimate the `1 distances
between linguistic entities.

In the constructed VSM by RMI, the `1 distance between vectors is given by the
sample median Indyk (2000). For given vectors ~v and ~u, the approximate `1 distance
between vectors is estimated by

L̂1(~u,~v) = median{|vi − ui|, i = 1, · · · ,m}, (4.15)

where m is the dimension of the VSM constructed by RMI, and |.| denotes the modulus.
Similar to RI, RMI employs random projections (RPs): a high-dimensional VSM

is mapped onto a random subspace of lowered dimension expecting that—with a high
probability—relative distances between vectors are approximately preserved. As sugges-
ted earlier in Equation 4.4, using the matrix notation, this projection is given by

M′
p×m = Mp×n × Rn×m, m � p, n, (4.16)

where R is often called the random projection matrix, and M and M′ denote p vectors in
the original n-dimensional and reduced m-dimensional vector spaces, respectively.

In RMI, the stated mapping in Equation 4.16 is given by Cauchy random projec-
tions. Indyk (2000) suggests that vectors in a high-dimensional space Rn can be mapped
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onto a vector space of lowered dimension Rm while the relative pairwise `1 distances
between vectors are preserved with a high probability. In Indyk (2000, Theorem 3) and
Indyk (2006, Theorem 5), it is shown that for an m ≥ m0 = log(1/δ)O(1/ε), where δ > 0
and ε ≤ 1/2, there exists a mapping from Rn onto Rm that guarantees the `1 distances
between any pair of vectors ~u and ~v in Rn after the mapping does not increase by a factor
more than 1 + ε with constant probability δ, and it does not decrease by more than 1 − ε
with probability 1 − δ.

In Indyk (2000), this projection is proved to be obtained using a random projection
matrix R that has a Cauchy distribution—that is, for ri j in R, ri j ∼ C(0, 1). Since R has a
Cauchy distribution, for every two vectors ~u and ~v in the high-dimensional space Rn, the
projected differences x = ~̂u − ~̂v also have Cauchy distribution, with the scale parameter
being the `1 distances:

x ∼ C(0,
n∑

i=1

|ui − vi|). (4.17)

As a result, in Cauchy random projections, estimating the `1 distance between any two
vectors ~u and ~v boils down to the estimation of the Cauchy scale parameter from i.i.d.
samples x. Because the expectation value of x is infinite,1 the sample mean cannot be
employed to estimate the Cauchy scale parameter. Simply put, this means that

∑n
i=1 |ui−vi|

can be used to estimate distances at the reduced dimensionality. Instead, using the 1-
stability of Cauchy distribution, Indyk (2000) proves that the median can be employed to
estimate the Cauchy scale parameter, and thus the `1 distances at the projected space Rm.

Subsequent studies simplified the method proposed by Indyk (2000). Particu-
larly, Li (2007) shows that R with Cauchy distribution can be substituted by a sparse
R that has a mixture of symmetric 1-Pareto distribution. A 1-Pareto distribution can be
sampled by 1/U, where U is an independent uniform random variable in (0, 1). This
results in a random matrix R that has the same distribution as described by Equation 4.14.

The RMI’s two-step procedure is explained using the basic properties of matrix
arithmetic and the descriptions given above. Given the projection in Equation 4.16, the
first step of RMI refers to the construction of R: index vectors are the row vectors of R.
The second step of the process refers to the construction of M′: context vectors are the row
vectors of M′. Using the distributive property of multiplication over addition in matrices,2

it can be verified that the explicit construction of M and its multiplication to R can be
substituted by a number of summation operations, exactly as explained from Equation 4.7
to Equation 4.9 for projections in Euclidean spaces. That is, M can be represented by
the sum of unit vectors in which a unit vector corresponds to the co-occurrence of a
linguistic entity and a context element. The result of the multiplication of each unit vector
and R is the row vector that represents the context element in R—that is, the index vector.

1That is, E(x) = ∞, since x has a Cauchy distribution. Cauchy distribution is a heavy tailed distribution,
therefore, the expected value does not exist.

2That is, (A + B)C = AC + BC.
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Therefore, M′ can be computed by the accumulation of the row vectors of R that represent
encountered context elements, as stated in the second step of the RMI procedure.

4.3.1.1 Alternative distance estimators

As stated above, Indyk (2000) suggests using the sample median for the estimation of the
`1 distances. However, Li (2008) argues that sample median estimator can be biased and
inaccurate, particularly if the targeted reduced dimensionality (i.e., m) is small. Hence, Li
(2008) suggests using the geometric mean estimator instead of the median sample.1 Ac-
cordingly, the `1 distances at the reduced dimensionality can be estimated by

L̂1(~u,~v) =
( m∏

i=1

|ui − vi|
) 1

m . (4.18)

I suggest computing the L̂1(~u,~v) in Equation 4.18 using the arithmetic mean of
logarithm-transformed values of |ui − vi|. Therefore, with the help of the logarithmic
identities, the multiplications and the exponent power in Equation 4.18 are, respectively,
transformed to a sum and a multiplication:

L̂1(~u,~v) = exp
( 1
m

m∑
i=1

ln(|ui − vi|)
)
. (4.19)

For a computational implementation, Equation 4.19 for estimating L̂1 is more plausible
than Equation 4.18—for example, the overflow is less likely to happen during the pro-
cess. Moreover, calculating the median involves sorting an array of real numbers. Thus,
computation of the geometric mean in logarithmic scales can be faster than computation
of the median sample, particularly when the value of m is large.

4.3.1.2 RMI’s parameters

In order to employ the RMI method for the construction of an `1-normed VSM at a re-
duced dimensionality, two model parameters should be decided: (a) the targeted reduced
dimensionality of the VSM, which is indicated by m in Equation 4.16 and (b) the number
of non-zero elements in index vectors, which is determined by s in Equation 4.14. In
contrast to the classic one-dimension-per-context-element methods of VSM construction
and similar to RI,2 the value of m in RPs and thus in RMI is chosen independently of the
number of context elements in the model (n in Equation 4.16).

In RMI, m determines the probability and the maximum expected amount of dis-
tortions ε in the pairwise distance between vectors. Based on the proposed refinements
of Indyk (2000, Theorem 3) by Li et al. (2007), it is verified that the pairwise `1 distance

1See also Li et al. (2007, Lemma 5–9).
2That is, n context elements are modelled in an n-dimensional VSM.
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between any p vectors is approximated within a factor 1 ± ε, if m = O(log p/ε2), with a
constant probability. Therefore, the value of ε in RMI is subject to the number of vectors
p in the model. For a fixed p, a larger m yields to lower bounds on the distortion with
a higher probability. Because a small m is desirable from the computational complexity
outlook, the choice of m is often a trade-off between accuracy and efficiency. Similar to
discussions in Section 4.2.1 for RI, m can be seen as the capacity of the model for ac-
commodating new vectors without causing a large amount of distortion in the distances
between vectors.1 According to my experimental experiences, m ≥ 400 is suitable for
most applications.

The number of non-zero elements in index vectors, however, is decided by the
number of context elements (i.e., n) and the sparseness of the VSM at its original di-
mension (denoted by β). Li (2007) suggests 1

O(
√
βn) as the value of s in Equation 4.14.

As discussed elsewhere, because of the long tail distribution of context elements and lin-
guistic entities (e.g., the Zipfian distribution of words in documents), VSMs employed in
distributional semantics—and in general, text analysis—are highly sparse. The sparsity of
a VSM in its original dimension (i.e., β) is often considered to be around 10−4 ≤ β ≤ 10−2.
However, as the original dimension of VSM n is very large—otherwise there would be no
need for dimensionality reduction—the index vectors are often very sparse. Similar to m,
larger s produces smaller errors. However, during the construction of a VSM, a large s
imposes more processes than a small s.

It is important to note that the influence of s in RI and RMI is different. Whereas
in RI, a large s may cause further distortion in the relative estimated distances, in RMI a
larger s can help the estimated relative distances converge faster to the relative distances
in the original high-dimensional space. Based on the performed experiments and without
providing mathematical proofs, for an m-dimensional VSM, I suggest 2d m

2
√
αne non-zero

elements, in which half of them are positive and the other half are negative.

4.3.1.3 Empirical evaluation of RMI

This section reports the performance of the RMI method with respect to its ability to
preserve the relative `1 distance between linguistic entities in a VSM—similar to the ob-
servations reported earlier to evaluate RI.2 Therefore, instead of a task-specific evaluation,
it is shown that the relative `1 distance between a set of words in a high-dimensional word-
by-document model remains intact when the model is constructed at a reduced dimension-
ality using the RMI technique. This evaluation is repeated for a document-by-word model
using the same dataset used in Section 4.2.1.1 for RI, too. The effect of various settings
of the RMI’s parameters are then explored in the observed results.

The purpose of the reported evaluations is to show the ability of RMI in preserving

1Li et al. (2007) details the choice of m using mathematical arguments and observations over synthes-
ised date.

2See the experiment in Section 4.2.1.1.
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PoS Words

Noun
website email support software students skills project
research nhs link services organisations

Adjective
online digital mobile sustainable global unique excellent
disabled new current fantastic innovative

Verb use visit improve provided help ensure develop

Table 4.1: Words employed in the experiments. These words are the chosen examples in Ferraresi
et al. (2008).
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Figure 4.8: List of words sorted by their `1 distance to the word research. The distance increases
from left to right and top to bottom.

the relative `1 distances. Depending on the structure of the data that is being analysed and
the objective of the task in hand, the performance of the `1 distance for similarity meas-
urement can be better or worse than other similarity metrics (e.g., see the experiments in
Bullinaria and Levy, 2007). The evaluation designed in this section takes this fact into
the consideration. Hence, the purpose of the reported evaluations is not to show the su-
periority of RMI (thus the `1 distance) to dimensionality reduction techniques in normed
spaces other than `1 (e.g., RI or truncated SVD in `2-normed spaces) in a specific task.
If, in a task, the `1 distance shows higher performance than the `2 distance, then the RMI
technique is preferable to the RI technique or truncated SVD. Contrariwise, if the `2 norm
shows higher performance than the `1 norm, then RI or truncated SVD are more desirable
than the RMI method.

In the reported experiment, a word-by-document model is first constructed from
ukWaC at its original high dimension. UkWaC is a freely available corpus of 2,692,692
web documents, nearly 2 billion tokens and 4 million types (Baroni et al., 2009).1 There-
fore, a word-by-document model constructed from this corpus using the classic one-
dimension-per-context-element method has the maximum dimension of 2.69 million. In
order to keep the experiments computationally tractable, the reported results are limited
to 31 words from this model, which are listed in Table 4.1. Figure 4.9 shows the increase
in the dimensionality of the VSM when a new word from this list is added to the VSM.

In the designed experiment, a word from the list is taken as the reference and its
`1 distance to the remaining 30 words is calculated using the vector representations in

1UkWaC can be obtained from http://wacky.sslmit.unibo.it/doku.php?id=corpora.

http://wacky.sslmit.unibo.it/doku.php?id=corpora
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Figure 4.9: The increase in the dimensionality of a word-by-document model constructed from
the ukWaC: Adding a new word to the model causes the VSM’s dimension to burst when it is
constructed using the classic one-document-per-dimension.

the high-dimensional VSM. These 30 words are then sorted in ascending order by the
calculated `1 distance. The procedure is repeated for all of the 31 words in the list, one by
one. Therefore, the procedure results in 31 sorted lists, each containing 30 words. Figure
4.8 shows an example of such an obtained sorted list, in which the reference is the word
research.1

The procedure described above is replicated to obtain the lists of sorted words
from VSMs that are constructed at reduced dimensionality using the RMI technique, when
the method’s parameters—that is, the dimension of index vectors as well as the proportion
of zero and non-zero elements in them—are set differently. It is expected the obtained
relative `1 distances between each reference word and the 30 other words in an RMI-
constructed VSM to be the same as the obtained relative distances in the original high-
dimensional VSM. Therefore, for each VSM that is constructed by the RMI technique,
the resulting sorted lists of words are compared by the sorted lists that are obtained from
the original high-dimensional VSM.

Similar to the other experiments reported in this chapter, the Spearman’s rank
correlation coefficient (ρ) is employed to compare the sorted lists of words and thus the
degree of distance preservation in the RMI-constructed VSMs at reduced dimensionality.
Hence, given a list of sorted words obtained from the original high-dimensional VSM
(listo) and its corresponding list obtained from a VSM of reduced dimensionality (listRMI),
the Spearman’s rank correlation for the two lists is calculated using Equation 4.10 (in
which, di fi is the difference in paired ranks of words in listo and listRMI , and n = 30 is the
number of words in each list). The average of ρ over the 31 lists of sorted words, denoted
by ρ̄, is reported to indicate the performance of RMI with respect to its ability for distance
preservation. The closer ρ̄ is to 1, the better the performance of RMI with respect to the
relative `1 distance preservation.

1Please note that the number of possible arrangements of 30 words without repetition in a list in which
the order is important (i.e., all permutations of 30 words) is 30!. As a result, the probability of generating
the same sorted list of words when they are arranged by their `1 distance to another word is 1

30! .
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Figure 4.10: The ρ̄ axis shows the observed average Spearman’ rank correlation between the
order of the words in the lists that are sorted by the `1 distance obtained from the original high-
dimensional VSM and the VSMs that are constructed by RMI at reduced dimensionality using
index vectors of various numbers of non-zero elements.

Figure 4.10 shows the observed results at a glance when the distances are estim-
ated using the median (Equation 4.15). As shown in the figure, when the dimension of the
VSM is above 400 and the number of non-zero elements is more than 12, the obtained re-
lative distances from the VSMs constructed by the RMI technique start to be analogous to
the relative distances that are obtained from the original high-dimensional VSM, that is, a
high correlation (ρ̄ > 0.90). For the baseline, the average correlation of ρ̄random = −0.004
between the sorted lists of words obtained from the high-dimensional VSM and 31×1000
lists of sorted words that are obtained by randomly assigned distances is reported.

Figure 4.11 shows the same results as Figure 4.10, however, in minute detail and
only for VSMs of dimension m ∈ {100, 400, 800, 3200}. In these plots, squares ( ) in-
dicate the ρ̄ while the error bars show the best and the worst observed ρ amongst all the
sorted lists of words. The minimum value of the ρ-axis is set to 0.611, which is the worst
observed correlation in the baseline (i.e., randomly generated distances). The dotted line
(i.e., ρ = .591) shows the best observed correlation in the baseline and the dashed-dotted
line shows the average correlation in the baseline (ρ = −0.004). As suggested in Sec-
tion 4.3.1.2, it can be verified that an increase in the dimension of VSMs (i.e., m) increases
the stability of the obtained results (i.e., the probability of preserving distances increases).
Therefore, for large values of m (i.e., m > 400), the difference between the best and the
worst observed ρ decreases; average correlation ρ̄→ 1, and the relative distances in RMI-
constructed VSMs become identical to those in the original high-dimensional VSM.

Figure 4.12 represents the obtained results in the same setting as above, however,
when the distances are approximated using the geometric mean (Equation 4.19). The ob-
tained average correlations ρ̄ from the geometric mean estimations are almost identical to
the median estimations. However, as expected, the geometric mean estimations are more
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Figure 4.11: Detailed observation of the obtained correlation between relative distances in RMI-
constructed VSMs and the original high-dimensional VSM. The `1 distance is estimated using the
median. The squares denote ρ̄ and the error bars show the best and the worst observed correlations.
The dashed-dotted line shows the random baseline.
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Figure 4.12: The observed results when the `1 distance in RMI-constructed VSMs is estimated
using the geometric mean.

reliable for small values of m; particularly, when using the geometric mean, the worst
observed correlations are higher than those observed when using the median estimator.

This experiment is also repeated over the document-by-word models that have
been employed earlier in Section 4.2.1.1. Instead of the Euclidean distance, however, the
constructed models are used to verify the ability of RMI-constructed VSMs to preserve
`1 distances between vectors. Results are shown in Figure 4.13.

4.3.2 Random Manhattan Integer Indexing

The application of the RMI method is hindered by two obstacles: float arithmetic oper-
ations required for the construction and processing of the RMI-constructed VSMs and
the calculation of the product of large numbers when `1 distances are estimated using the
geometric mean.
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Figure 4.13: The RMI’s ability to preserve relative `1 distances in a document-by-word model: The
performance is assessed using the observed ρ̄ over a set of 10,000 documents chosen randomly
from the WaCkypedia_EN in an experiment similar to Section 4.2.1.1. Figure 4.13a shows the
overall observed result when the RMI’ parameters are set differently. Figure 4.13b shows the same
results only when the dimension of VSM is 200. In this figure, the minimum value of the ρ̄-axis
is set to the best observed correlation ρ = 0.1375 when distances are generated randomly (first
baseline). The + and − marks show ρ̄ when `1 distance is estimated in RI-constructed VSMs
of dimensionality 1600 using the estimator in Equation 4.19 and the standard definition of the
`1 distance, respectively. Figure 4.13c plots the same observed results only for RMI and when
m ∈ {200, 400, 800}. These results are similar to the experiments with the word-by-document
model. It can be verified that an increase in the dimension of VSM results in an increase in ρ̄.

The proposed method for the generation of index vectors in RMI results in index
vectors of non-zero elements that are real numbers. Consequently, index vectors and thus
context vectors are arrays of floating point numbers. These vectors must be stored and
accessed efficiently when the RMI technique is employed in an application. However,
storing and processing floating numbers are resource intensive, and therefore not desir-
able in real-world applications—particularly when dealing with large corpora. Even if
the requirement for the storage of index vectors is alleviated—for example, using a de-
randomisation technique for their generation—context vectors that are derived from these
index vectors are still arrays of float numbers and their storage and process is of high
space and time complexity.

To tackle this problem, I suggest substituting the value of non-zero elements of
RMI’s index vectors (given in Equation 4.14) from 1

U to integer values of b 1
U c, where

b 1
U c , 0—that is:

ri =


b 1

U1
c with probability s

2

0 with probability 1 − s

b 1
U2
c with probability s

2

. (4.20)

I argue that the resulting random projection matrix still has an asymptomatic Cauchy
distribution. Therefore, the proposed methodology to estimate the `1 distance between
vectors is still valid. The `1 distance between context vectors must be still estimated
using either the median or the geometric mean.
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Figure 4.14: The observed results when using the RMII method for the construction and estima-
tion of the `1 distances between vectors. The method is evaluated in the same setup as the RMI
technique.

The use of the median estimator—for the reasons stated in Section 4.3.1.1—is not
plausible. On the other hand, the computation of the geometric mean can be laborious as
the overflow is highly likely to happen during its computation. Using the value of b 1

U c

for non-zero elements of index vectors, it is evident that for any pair of context vectors
~u = (u1, · · · , um) and ~v = (v1, · · · , vm), if ui , vi then |ui − vi| ≥ 1. Therefore, for ui , vi,
ln |ui − vi| ≥ 0 and thus

∑m
i=1 ln(|ui − vi|) ≥ 0. In this case, the exponent in Equation 4.19

is a scale factor that can be discarded without a change in the relative distances between
vectors.1 Based on the intuition that the distance between a vector and itself is zero and
the explanation given above, inspired by smoothing techniques and without being able to
provide mathematical proofs, I suggest estimating the relative distances between vectors
using

L̂1(~u,~v) =

m∑
i=1

ui,vi

ln(|ui − vi|). (4.21)

In order to distinguish the above changes in RMI, the resulting technique is called
random Manhattan integer indexing (RMII). The experiment described in Section 4.3.1.2
is repeated using the RMII method. As shown in Figure 4.14, the obtained results are
almost identical to the observed results when using the RMI technique. While RMI per-
forms slightly better than RMII in lower dimensions—for example, m = 400—RMII
shows more stable behaviour than RMI at higher dimensions—for example m = 800.
However, in all these cases, RMII demands less memory and processing resources for its
computations.

1Please note that according to the axioms in the distance definition, the distance between two numbers
is always a non-negative value. When index vectors consist of non-zero elements of real numbers, the value
of |ui − vi| can be between 0 and 1, that is, 0 < |ui − vi| < 1. Therefore, ln(|ui − vi|) can be a negative number
and thus the exponent scale is required to make sure that the result is a non-negative number.
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4.4 Comparing RMI and RI

RMI and RI utilise a similar two-step procedure consisting of the creation of index vectors
and the construction of context vectors. In addition, both RMI and RI are incremental
techniques that construct a VSM at reduced dimensionality directly, without requiring the
VSM to be constructed at its original high dimension. Despite these similarities, RMI and
RI are motivated by different applications and mathematical theorems. RMI is justified
using asymptotic Cauchy random projections whereas RI is justified using asymptotic
Gaussian random projections.

As described above, RMI approximates the `1 distance using a non-linear estim-
ator, which has not yet been employed for the construction of VSMs and the calculation
of `1 distances in distributional approaches to semantics. In contrast, RI approximates the
`2 distance using a linear estimator. RI has initially been justified using the mathemat-
ical model of the sparse distributed memory (SDM). Later, as suggested in this chapter,
the RI method was explained using the lemma proposed by Johnson and Lindenstrauss
(1984)—which elucidates random projections in Euclidean spaces (see Section 4.2 for
details). Although both the RMI and RI methods can be established as α-stable random
projections—respectively for α = 1 and α = 2—the methods cannot be compared as they
address different goals. If, for a given task, the `1 norm outperforms the `2 norm, then
RMI is preferable to RI. Contrariwise, if the `2 norm outperforms the `1 norm, then RI
is preferable to RMI. As implied in the reported evaluations and stated above, RI and
RMI cannot be replaced with each other. As shown in the previous sections, using RI
for dimensionality reduction causes a large distortion in the relative `1 distances between
vectors. Reversely, RMI does not preserve the relative `2 distances between vectors.

To support the earlier claim that RI-constructed VSMs cannot be used for the `1

distance estimation, the RI method is evaluated in the experimental setup that has been
used for the evaluation of RMI and RMII. In these experiments, however, RI is employed
to construct vector spaces at reduced dimensionality and estimate the `1 distance using
Equation 4.13 (the standard `1 distance definition) and Equation 4.15 (the median estim-
ator) for m ∈ 400, 800. As shown in Figure 4.15, the experiments support this claim.

4.5 Summary

In this chapter, the applications of random projections for constructing vector spaces with
reduced dimensionality are outlined. As discussed, these methods can be employed to
enhance the performance in distributional semantic models.

This chapter has two contributions in particular. First, in Section 4.2, the random
indexing method is explained mathematically; and its two-step procedure is delineated
using sparse asymptotic Gaussian random projections. Consequently, criteria for setting
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Figure 4.15: Evaluation of RI for estimating `1 distances for m = 400 and m = 800 when the
distances are calculated using (a) the standard definition of distance in `1-normed spaces and (b)
the median estimator. The obtained results using RI do not show a correlation to the `1 distances
in the original high-dimensional VSM.

the method’s parameters are suggested. Second, in Section 4.3, a novel technique, named
random Manhattan indexing (RMI), for the construction of `1-normed VSMs directly at
reduced dimensionality is suggested. In addition, Section 4.3.2 introduces the random
Manhattan integer indexing (RMII) technique—that is, a computationally enhanced ver-
sion of the RMI technique. The ability of these methods to preserve `1 distances are
demonstrated using empirical evaluations.

As discussed, the use of random projections in the incremental way suggested in
this chapter has a number of benefits. First, it enhances the computational complexity of
the construction of models by combining the process of collecting co-occurrences with
the dimensionality reduction process. The result is a vector space model constructed
directly with reduced dimensionality. Second, because of the reduced dimensionality
of the vectors, the subsequent similarity computations are performed faster. Third, the
proposed incremental method provides the capability of updating a model at any time
during its use, which makes it suitable for frequently updated data, particularly, in the
context of big-text data analytics.

As suggested in Section 4.4, vector spaces that are constructed using random pro-
jections, such as the RI and RMI techniques, are limited to the specific normed space
that they are designed for. There are methods that claim they can overcome this restric-
tion—for example, Li et al.’s (2006a) conditional random sampling. However, they have
not yet been applied to the vector space models of semantics. The use of these methods
is one way to extend the presented research in this chapter. In the proposed methods in
this chapter, only one random projection is applied before estimating distances between
vectors. However, it is possible to use a chain of projections—for example, as it is used in
the implementations of neural network algorithms. Such combinations are also possible
for RMI and RI.
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Last but not least, the design principles employed in this chapter to reintroduce
RI and propose RMI and RMII can be employed for normed spaces other than the `1

and the `2-normed. This is an exciting future research that has not yet been investigated
for natural language processing applications. Random projections are a vibrant research
topic in modern mathematics and statistics and the future advances in these fields will
most definitely result in new efficient methods and techniques for big text data analytics.
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Chapter 5

Identifying Co-Hyponym Terms: The
Method and its Evaluation

In this chapter, the proposed method for identifying co-hyponym terms is explained and
evaluated. The principles of automatic term recognition and distributional semantics are
combined to implement a method that extracts terms from a category of similar concepts
(i.e., co-hyponyms). After the extraction of candidate terms, stable random projections
are employed to represent these candidate terms as low-dimensional vectors. These vec-
tors are derived automatically from the co-occurrences of candidate terms and words that
appear in their proximity (context-windows). In a memory-based k-nearest neighbours
learning framework, and using a small set of manually annotated terms, co-hyponym
terms are identifiedf by classifying these vectors.

Section 5.1 reintroduces the task and justifies the proposed method based on the
principles of distributional semantics. This introduction is followed by delineating the
method in Section 5.2. In Section 5.3, the evaluation framework and material are dis-
cussed. Results from a number of experiments in the defined evaluation framework are
reported in Section 5.4 and discussed in Section 5.5. After suggesting an approach for im-
proving the performance of the method for large recall values in Section 5.6, the chapter
concludes with a summary in Section 5.7.1

1The proposed method in this chapter has been published and evaluated partly in Zadeh and Handschuh
(2014b) and Zadeh and Handschuh (2014c).

139
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5.1 Introduction

As is explained in Chapter 3, in automatic term recognition (ATR), given a special corpus,
the goal is to automatically extract a specialised vocabulary—that is, in its simplest form,
a terminological resource composed of a set of lexical units known as terms. Terms can
be either simple or complex—that is, single-token or multi-token lexical units. A termin-
ological resource is an indispensable component of a system employed to communicate a
specialised knowledge. Hence, it signifies diverse concepts in the targeted domain know-
ledge. These concepts, and thus terms, are often organised according to a classification
scheme, which is determined by a number of factors such as the intended application con-
text. In an information system, this categorisation is often a major mechanism to reflect
the structure of the (conceptualised) specialised knowledge—for example, as practised in
ontology engineering (e.g., see L’Homme and Bernier-Colborne, 2012, for an overview)
and as explained in Section 1.1.

For instance, the terms lexicon, corpus, terminology, parsing and information ex-
traction are conceivable entries from a terminological resource in the domain of computa-
tional linguistics. In this list, lexicon, parsing, and terminology are simple terms, whereas
information extraction is a complex term. According to a classification scheme (i.e., a
conceptualisation of the domain knowledge), lexicon and corpus can be grouped under the
concept category language resource. Similarly, information extraction and parsing can be
classified under the category technology and process (Figure 5.1). It is worth mentioning
that a term can appear in more than one category of concepts. In the given example, the
term terminology appears in both categories, as a term that can signal both a language
resource and a processing resource (see also Figure 3.2 in Chapter 3). Accordingly, as
discussed in Section 1.1, terms under each category of concepts are in a co-hyponymy
relationship since they share a similar hypernym. For instance, in the example given in
Figure 5.1, lexicon, terminology and corpus are co-hyponym terms.

A number of research studies have attempted to extract and define a scheme for
the categorisation of terms into co-hyponym groups, either implicitly using a clustering
technique (e.g., as suggested in Dupuch et al., 2014; Cimiano et al., 2005), or explicitly by
inducing inference rules—such as using an automatic or manual engineering of Hearst’s
(1992) lexico-syntactic patterns (e.g., as suggested in Maynard et al., 2009).1 In a large
number of applications, however, the classification scheme2 is known (or, at least, a partial
knowledge of it exists). In this case, finding co-hyponym terms that belong to a particular
category of concepts is a typical task. In the context of ontology engineering, the former
research is usually a sub-process of the ontology learning task, whereas the latter is often
demanded for ontology population (see Buitelaar et al., 2005; Wong et al., 2012). The

1Note that the use of these patterns is not limited to taxonomy induction processes, as is shown in the
next few pages.

2That is, the set of hypernyms in the conceptualisation of the domain knowledge under investigation.
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Computational Linguistics

· · ·Language Resource

· · ·LexiconCorpus

Technology & Process

TerminologyParsingInformation Extraction· · ·

Figure 5.1: Taxonomy and co-hyponyms: This example shows a simple taxonomy in the domain
of computational linguistics. Terms are classified into two categories: language resource and tech-
nology and process. Terms under each category (placed in boxes) form a group of co-hyponyms.
A number of terms such as terminology in this example can be polysemous, hence classified under
more than one category of concepts. An ideal ATR system extracts terms listed in the top row of
this figure. As suggested, terms can be organised according to a taxonomy. One way to approach
this task is to identify co-hyponyms.

focus in this Chapter is on the latter.
Entity extraction methods are commonly employed to distil co-hyponym terms,

of which bio-entity recognition tasks are the most established examples (e.g., see Kim
et al., 2004). As detailed in Section 1.2, these methods, however, are not suitable for a
number of use cases due to their lack of flexibility and a mechanism for resembling the
knowledge structure. Moreover, developing entity taggers is restricted by the availabil-
ity of manually annotated corpora. In these corpora, individual mentions of terms and
their concept category are required to be manually annotated. A few techniques exploit
information redundancy in very large corpora to obviate this requirement.1 However, in
special (domain-specific) corpora, using information redundancy alone can be insufficient
to automatically generate annotated data (e.g., as shown in Section 5.4.1.1). Last but not
least, using an entity tagger for extracting co-hyponyms abandons an important charac-
teristic of special corpora—that is, reduced lexical ambiguity.

As discussed in Chapter 1 and 3, in specialised languages, terms are often coined
to facilitate communication by reducing lexical ambiguity. Therefore, synonymy and
polysemy are less frequent in specialised languages than general language. The concept
of sense can be defined differently depending on the context (e.g., see Cimiano et al.,
2013, for an elaboration of a three faceted definition in the ontology-lexicon framework).2

Thus, the meaning of polysemy can be interpreted differently. In the context of this dis-
cussion, I suggest that a domain ontology populated by instances extracted from a special
corpus plays an analogical role to that of a lexical database supplemented by word senses
in general language. Accordingly, I assume that the relationships between instances (i.e.,
terms in the special corpus) and concepts in the domain ontology is similar to the re-

1For instance, see Etzioni et al. (2005). These methods are often employed for the extraction of proper
nouns in general language. Usually, the manual annotation is replaced by hand-crafted lexico-syntactic
patterns, or a small number of seed examples.

2Sense has different senses and thus is polysemous, so to speak!
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lationship between word forms and senses in a general language lexical database.1 Let
me explain the proposed argument by a comparison between WordNet and the GENIA
ontology populated by annotations provided in the GENIA corpus.

WordNet is unarguably a general language vocabulary in which the proportion of
polysemous words is approximately 17% (according to Miller, 1995). The GENIA cor-
pus (which is a well-known corpus in the domain of molecular biology) provides manual
annotations for 92,722 term mentions (Kim et al., 2003). These term annotations in the
GENIA corpus are grounded on the GENIA ontology. The GENIA ontology consists of
45 classes that are organised in a hierarchical taxonomy of 6 levels. The annotated 92,722
term mentions form a vocabulary of 34,077 distinct entries (hereinafter GENIA termino-
logical resource). Among them, individual mentions of 1,373 entries are annotated with
at least two classes from the GENIA ontology. If these terms are considered polysemous,
compared to WordNet, only a small fraction (i.e., 1372

34077 = 4%) are polysemous.2 Although
a direct comparison of the two resources can be not accurate,3 it is still a reliable evidence
of the expected differences of the properties4 of relationships between entries in a termin-
ological resource and a general language lexical database. Disregarding the employed
vocabulary for describing this phenomenon (i.e., whether or not to use the word poly-
semy), this thesis exploits the described phenomenon and suggests a method to identify
co-hyponym terms.

Similar to ATR and in contrast to entity recognition tasks, the method proposed for
identifying co-hyponym terms works at a corpus level and does not deal with individual
occurrences of a term in text snippets. However, in contrast to ATR (which extracts
terms from diverse categories of concepts in a domain knowledge) and similar to entity
recognition, the objective is to extract a particular subset of terms that signify a similar
hypernym.

The proposed method in the investigated use case has many practical applications:
ranging from classic applications in information retrieval (e.g., see principles that are sug-
gested by Rijsbergen, 1977, for index term weighting) to more recent so-called ontology-
based information systems as (assistive) tools for maintaining and populating domain

1The conceptualisation behind a domain ontology (i.e., the number of classes and their relationship)
plays a role in the proposed analogy and the subsequent proposed comparison in this section (i.e., the re-
lationship between granularity vs. condensation of concepts in domain ontologies). For simplicity without
the loss of generality, I discard this relationship.

2A same conclusion can be drawn by analysing the distribution of words senses in SemCor (Mihalcea,
1998)—that is, a corpus of general language text annotated with WordNet senses—and the GENIA corpus.

3For instance, as they are built from opposite viewpoints. In constructing WordNet, for a given word,
an inventory of all the meanings of the word is made by searching the occurrences of the word in large
text corpora. In the GENIA terminological resource, however, from a limited number of observations in
the specialised corpus, all the concepts that terms represent are collected. In the proposed example, as put
by Cimiano et al. (2013), a reification of the link between terms (lexical forms) and ontological references
from the GENIA corpus are assumed to represent senses. According to this terminology, in this thesis,
terms that are reified to the same ontological reference are considered co-hyponyms.

4Such as diversity and frequency.
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ontologies. Apart from these two broad applications, there is a growing demand of in-
formation extraction tasks that, in fact, can be boiled down to the proposed co-hyponym
identification task. For example, in the so-called expertise finding task (e.g., see Balog
and de Rijke, 2008) a major process is the identification of expertise topics (e.g., Buitelaar
and Eigner, 2008). In this scenario, the expertise topics are, in fact, a set of co-hyponym
terms, and can thus be identified using the method proposed in this chapter. Classifying
user-generated annotations in applications such as tag-based information access (e.g., Yi,
2010) is another example. A similar use case is presented by Chakraborty et al. (2014) for
extracting information from unstructured text ads. Last but not least are applications such
as technology watch that intend to provide technological intelligence by machine reading
of large text corpora (e.g., as explained in QasemiZadeh, 2010).

As described in Section 1.2, the co-hyponym identification task can be formulated
as a classification task (see Figure 1.1 in Chapter 1). Therefore, the proposed method
is realised as an ad hoc term-weighting procedure on top of an ATR system’s two-step
procedure—candidate term extraction followed by term weighting and ranking. As de-
scribed in Chapter 3, after the extraction of candidate terms, ATR combines the unithood
and termhood scores to weight terms (Figure 5.2). Unithood characterises the strength of
syntagmatic relationships between the tokens that compose complex terms. Termhood,
however, characterises a paradigmatic relationship—that is, the association of candid-
ate terms to the concepts in a specialised knowledge domain, which is verbalised by the
special corpus under investigation. Termhood in ATR disregards terms’ associations to
different concept categories. In contrast, in the proposed task, a score that discerns these
associations must be devised. This score, however, is similar to termhood in the sense
that it characterises a paradigmatic relationship—that is, the co-hyponymy relationship
between terms that are grouped under a category of concepts, such as the relationship
between lexicon, corpus, and terminology exemplified in Figure 5.1.

A distributional approach is employed to design this score. By extending Harris’s
(1954) distributional hypothesis, one can claim that the context in which terms are used
can be exploited to identify their concept category.1 Hence, in this thesis, it is assumed
that the association of a term to a concept category can be characterised using the syn-
tagmatic relation of the term and its co-occurred words in windows of text extended in
the vicinity of the term’s mentions in the corpus (i.e., context-windows as shown in Fig-
ure 5.3).2 Accordingly, I hypothesise that co-hyponym terms tend to have similar distribu-
tional properties in context-windows. In order to quantify these distributional similarities,

1With the assumption that multi-token complex terms have no compositional semantics.
2This claim is not new. The syntagmatic consequences of hyponymy relationships in particular—

and, the syntagmatic consequences of paradigmatic relationships in general—have been widely exploited
in research literature. The aforementioned Hearst’s (1992) patterns is, perhaps, the most familiar ex-
ample. Hearst exploits the syntagmatic consequences of hyponym relationships to suggest patterns such
as · · · X and other Y · · · for the automatic acquisition of hyponymy relationships. In this thesis, this lin-
guistic phenomena is articulated in the framework of distributional semantic models in order to characterise
co-hyponymy relationships.
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Information Extraction technology · · ·currentemploying· · ·

Information Extraction methods · · ·differentusingof· · ·

Information Extraction has been · · ·oftechnologythe· · ·

Unithood

Termhood

Figure 5.2: Unithood and termhood with respect to the terms usage in special corpus. In the
given example, an ideal unithood measure identifies a strong association—that is, a syntagmatic
relationship—between the two tokens information and extraction, and hence marks information
extraction as a probable complex candidate term. Termhood, however, characterises the associ-
ations of specialised meanings to candidate terms: a paradigmatic relationship.

vector space models—which are described thoroughly in Chapter 2—are employed.
Words that appear in context-windows are represented by the elements of the

standard basis of a vector space—that is, informally, dimensions of a vector space—and
each candidate term is represented by a vector. In this vector space, the coordinates of
vectors is determined by the co-occurrence frequency of words that appear in context-
windows and candidate terms in a special corpus. Consequently, the values assigned to
the coordinates of a vector represent the correlation of the candidate term that the vec-
tor represents and the words in context-windows. As a result, the vectors’ proximity
can be employed to compare the distributional similarities of candidate terms. As sug-
gested by Sahlgren (2006), the result is a geometric metaphor of meaning: a semantic
space, which, following previous research such as Schütze (1993), can be named a term-
space model.

In this term-space model, a category of terms (i.e., co-hyponyms) is characterised
using a set of reference terms (shown by Rs). Rs is a small number of terms that are
manually annotated with their corresponding concept category. The distance between
vectors that represent candidate terms and the vectors that represent Rs is assumed to
determine the association of candidate terms to the concept categories represented by Rs.
This association is computed using a k-nearest neighbours (k-nn) framework (Daelemans
and van den Bosch, 2010). As is explained in Section 2.4 of Chapter 2, the memory-based
k-nn learning technique provides a similarity-based reasoning framework that can be used
to identify terms’ categories without the need for formulating these associations using a
meta-language, such as rules.

Previous research has confirmed the proposed term-space model’s viability in cap-
turing paradigmatic relationships between words, which can be taken as the evidence for
the proposed method’s practicability. However, as is described in Chapter 2, like other dis-
tributional approaches to semantics, finding a context-window’s configurations that best
characterises terms from similar concept categories is still a major research concern that
must be investigated empirically. Besides the configuration of context-windows, the para-
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Information Extraction technology to discover knowledge in · · ·currentemployingwhenarisethat· · ·

Information Extraction methods for the offline construction of · · ·differentusingofimpacttheofpicture· · ·

Information Extraction has been stimulated by the Message · · ·oftechnologytheofdevelopmenttheon· · ·

Figure 5.3: Illustration of a context-window of size 3 tokens that extend around a term: in the
example above, this context-window is shown for the occurrences of the candidate term inform-
ation extraction in three different sentences from a special corpus. For each occurrence of the
candidate term information extraction in each line (i.e., a sentence), the context-window consists
of words that are placed in rectangles. To construct a distributional model, the co-occurrences of
information extraction and words within these context-windows are represented by a vector.

meters of the classification framework are additional elements that influence the method’s
performance. The employed metric for similarity measurement, and the neighbourhood
size (k) are the parameters that can be set differently in the k-nn algorithm. Understand-
ably, a change in these parameters alters the observed results. To grasp the method’s
behaviour, the effect of these parameters must be investigated empirically, too.

The remainder of this chapter is devoted to the delineation of the proposed method
and the employed approach for its empirical investigation. Section 5.2 details the pro-
posed method. The evaluation methodology and materials are described in Section 5.3.
Subsequently, the observed results are reported in Section 5.4, which is followed by a
summary in Section 5.7.

5.2 The Proposed Methodology

Figure 5.4 illustrates the method. It is assumed that an ATR system extracts a list of can-
didate terms and, perhaps, ranks them by its own weighting mechanism. The extracted
list of candidate terms is then processed for constructing a vector space by scanning the
corpus for the occurrences of the candidate terms. It is assumed that a small number of
these candidate terms (e.g., 100) are annotated with their concept categories. Vectors that
represent these annotated terms form a set of reference vectors Rs. In the constructed vec-
tor space, using a k-nn algorithm, Rs is employed to assign a concept category association
weight cw to the remaining candidate terms.

For a given candidate term represented by the vector ~v, cw is computed using

cw(~v) =

k∑
i=1

s(~v, ~ri)δ(~ri), (5.1)

where s(~v,~r) denotes similarity between ~v and ~r ∈ Rs, in which Rs is sorted by s(~v,~r)
in descending order. If ~r represents a term from the targeted category of concepts, then
δ(~r) = 1, otherwise δ(~r) = 0. The function s can be defined in a number of ways; three
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Candidate Terms

Vector Space ConstructionCorpus

k-nn learning frameworkReference Terms

Concept Association Weight

Figure 5.4: The proposed method for measuring the concept category associations.

widely used definitions are employed:1

• s(~v,~r) = cos(~v,~r), that is, the cosine of the angles between ~v and ~r;
• s(~v,~r) = 1

1+`2
, where `2 is the Euclidean distance between ~v and ~r; and

• s(~v,~r) = 1
1+`1

, where `1 is the City block distance between ~v and ~r.

As can be understood, the vector space construction is the major step in the proposed
methodology, which is described in the following section.

5.2.1 Vector Space Construction Methodology

In distributional semantic models the curse of dimensionality is a common barrier, as is
discussed in Chapter 2. In the proposed distributional method, due to the Zipfian distribu-
tion of terms and words in context-windows, the curse of dimensionality is an inevitable
problem, too—that is, vectors that represent candidate terms are high-dimensional and
sparse (i.e., most of the elements of vectors are zero). These properties of vectors hamper
the subsequent classification process. To overcome this barrier, term-space models are
constructed incrementally and at a reduced dimensionality using random projections tech-
niques, which are proposed and justified in Chapter 4.

Each candidate term is assigned to an m-dimensional term vector ~t. Term vectors
are initially empty—that is, all the elements of ~t are set to zero. The corpus is then
scanned for the occurrences of candidate terms and words that co-occur with them in
context-windows. Each of these words is assigned exactly to one word vector ~w. Similar
to term vectors, word vectors are also m-dimensional. However, the elements w j of each
~w are instantiated with random values with the following distributions:

w j =


b−1

U1
c with probability 1

2α

0 with probability 1 − 1
α

b 1
U2
c with probability 1

2α

, (5.2)

where α is a small value. As a result, most of the elements of w j are set to zero and only a
few have a non-zero value. Once a ~w is generated and assigned to a word, it is stored and

1See Section 2.3.4 of Chapter 2 for a long list of similarity measures.
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kept for later usages.
If the similarity between ~v and ~r is measured using the cosine or the Euclidean

distance (i.e., in an `2-normed space), then U1 and U2 are set to 1 and α = O(
√
|~w|),

where |~w| is the number of word vectors. In this case, ~w vectors resemble a random
projection matrix that has a standard Gaussian distribution.1 However, if the similarities
are measured using the city block distance (i.e., in an `1-normed space), then U1 and U2

are two independent uniform random variables in (0, 1) and α = O(
√
|~w|/100), where the

constant factor 0.01 is an approximation of the sparsity of term-word co-occurrences in
the corpus. In this case, ~w vectors resemble a random projection matrix with a standard
Cauchy distribution.2

To capture the co-occurrence of a candidate term and a word in a context-window,
the word vector ~w that represents the word is added to the term vector ~v that represents
the candidate term—that is, ~v = ~t + ~w. This procedure is repeated to capture all the co-
occurrences of candidate terms and words that appear in context-windows in the input
corpus. The result is a vector space that reflects the observed co-occurrences of terms and
words, however, at the reduced dimension m.

Subsequent to the construction of a vector space using the method described
above, the similarities between term vectors and reference term vectors in Rs must be
computed. In the `2-normed constructed vector spaces, for the given vectors ~v and ~u, the
cosine between them is calculated using Equation 2.15 and their Euclidean distance using
Equation 2.16. In the `1-normed spaces, the city block distance, however, is computed
using the estimator proposed in Equation 4.21. Once computed, these distances and sim-
ilarities between vectors are used to weight candidate terms according to Equation 5.1.

For instance, given the term information extraction in Figure 5.3, this term is
first assigned to an empty m-dimensional term vector ~tie. Assume that all the term’s
occurrences in the corpus are listed in this figure and the context-window is configured as
shown (i.e., context-windows are stretched around the term for the size of three tokens).
Then, each word placed in a rectangle is assigned exactly to one m-dimensional word
vector ~w. In this example, the result is 15 word vectors. The vector ~tie is then accumulated
by these word vectors. Since the words to and for occur twice, their corresponding word
vector is also accumulated twice. The generated word vectors are stored and used for
constructing term vectors for candidate terms other than information extraction.

It becomes evident that the proposed method for constructing an `2-normed term-
space model is equivalent to the random indexing technique. In the `1-normed spaces,
however, the random Manhattan integer indexing (RMII) technique is employed. In
Chapter 4, it is shown that the relative distances of vectors in these m-dimensional models
are similar to the relative distances in the original high-dimensional vector spaces—that

1That is, a random projection matrix with asymptotic Gaussian distribution (see Chapter 4, Section 4.2
on Gaussian random projections).

2That is, a random projection matrix with asymptotic Cauchy distribution (see Chapter 4, Section 4.3
on random projections in `1-normed spaces).
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Abstract Sentence Token Type1

2,000 18,546 490,941
22,484
19,576

Table 5.1: A statistics summary of the GENIA corpus and its annotated terms.

is, when a term-space model is constructed using the classic one-dimension-per-context-
element method. Chapter 4 also discusses criteria for setting the parameters of the vector
space construction—that is, m and α. Simply put, it is shown that the value of m is de-
termined independently of the original dimension of the vector space (i.e., the number of
distinct words that appear in context-windows). It is, however, determined by the number
of term vectors ~t in the model. It is also described that α is decided by the original dimen-
sion and the sparseness of the vector space in its original dimension. These criteria are
employed for setting the method’s parameters in the reported evaluations.

5.3 The Evaluation Framework

5.3.1 Corpus and Performance Measure

To evaluate the plausibility of the proposed method and to determine its performance,
a set of experiments over the GENIA corpus are carried out and the obtained results are
reported. The GENIA corpus is a collection of 2000 abstracts from the domain of molecu-
lar biology (Kim et al., 2003). The corpus comprises manual annotations of biological
term mentions from several concept categories, which are organised in an ontology—also
called the GENIA ontology. GENIA corpus is freely available and in the past decade has
been used widely as a gold standard for benchmarking a variety of terminology mining
methods. Table 5.1 gives a summary of the size of the corpus. Additional information
about the GENIA corpus and its annotation process can be found in Kim et al. (2006).

In the GENIA ontology, terms are organised into 36 different categories such as
amino acids (consisting of proteins, peptides, . . . ), lipids, nucleic acids (consisting of
DNA, RNA, . . . ) and so on. To simplify the evaluation’s reproducibility, a taxonomy of
terms similar to the one suggested by Kim et al. (2004) in a shared-task for evaluating
bio-entity taggers is employed. Manually annotated term mentions from the GENIA cor-
pus2 are thus collected to build a terminological resource, in which terms are organised
according to the Kim et al.’s (2004) simplified taxonomy. To abridge the reports, unless
otherwise stated, the focus is on the identification of terms belonging to the category of

1The first row shows the number of distinct part-of-speech tagged tokens (normalised to lowercase)
while the second row shows the number of distinct tokens irrespective of their assigned part-of-speech tag
and when they are normalised to lowercase (which are used in the reported experiments).

2Version 3.02, which can be downloaded from http://www.nactem.ac.uk/GENIA/current/
GENIA-corpus/Term/GENIAcorpus3.02.tgz.

http://www.nactem.ac.uk/GENIA/current/GENIA-corpus/Term/GENIAcorpus3.02.tgz
http://www.nactem.ac.uk/GENIA/current/GENIA-corpus/Term/GENIAcorpus3.02.tgz
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TMention PMention TDistinct PDistinct TPolysemy PPolysemy

92,722 37,660 34,077 8,900 1,373 4031

Table 5.2: Statistics of the employed terminological resource: terms and protein terms are respect-
ively abbreviated by T and P (note P ⊂ T). TPolysemous and PPolysemous show the number of distinct
terms that are annotated with at least two different concept categories.

proteins—that is, the classification of protein and non-protein terms.
Table 5.2 shows the statistics for the extracted list of terms that is used as the gold

standard. The reported statistics in Table 5.2 include mentions of both nested and non-
nested terms. Amongst 97,876 ‘<cons>’ mark-ups in the corpus that identify boundaries
of terms, 5,154 mentions are not linked to the GENIA ontology and thus are not assigned
to any concept category. From this list of 5,154 mentions with no concept category an-
notation, 1,440 distinct lexical units are not assigned to any concept category in the whole
corpus. For instance, in

. . . are subject to tissue-specific and developmental stage-specific . . .

the lexical unit tissue-specific is marked as a term but not assigned to any concept category.
Similarly, in

. . . (SP and BP-14, 18, 19 kDs) isolated from splenic and brain cells. . .

splenic is marked as a term but not assigned to a category of concepts. These lexical units
are removed from the list of compiled terms.

The collected mentions of terms are compiled independently of their concept cat-
egory into a set of 34,077 distinct terms—that is, lexical units with identical surface struc-
ture are represented once in this set, even if they are annotated by two different concept
categories. As reported in Table 5.2, only a small number of terms (i.e., 1,373) are poly-
semous and their mentions are annotated and classified in at least two concept categories.
Amongst 8,900 terms that are classified as proteins, 403 terms are classified at least once
in an additional concept category and as a result are considered polysemous (i.e., approx-
imately 0.04% of all protein terms). For instance, in the following sentences

. . . using the murine B-cell lymphoma cell line A20, we show that . . .

. . . correlate with expression of both BCL-2 and A20.

the mentions of the lexical unit A20 are respectively annotated as a term of the concept
categories cell line and protein (indicated by G#cell_line and G#protein_molecule
in the GENIA corpus, respectively).

1In the GENIA corpus, protein terms themselves are classified into several categories such as protein
molecule, protein complex, and so on. If this classification is considered, then the number of polysemous
protein terms increases to 792.
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C V P
#Distinct Entry 58,558 19054 4,278

#Mentions 109,713 58,554 15,516
#DistinctPolysemous – 654 125

#MentionsPolysemous – 13,207 3,806

Table 5.3: Statistics of the extracted terminological resource using the YATEA system: candidate
terms, valid terms and protein terms are respectively abbreviated by C, V, and P (note P ⊂ V ⊂ C).
The statistics are also reported for Polysemous entries and their mentions in the corpus.

As stated earlier, the proposed method is built on top of an ATR system. Two
methodologies are exploited for evaluations. In a set of experiments, in order to remove
the effect of noise caused by the candidate term extraction process, the scope of ATR
is limited only to the scoring and ranking process. Hence, it is assumed that the noise-
free list of 34,077 terms in the GENIA corpus is known. Then, Frantzi et al.’s (2000b)
c-value score is employed to rank these terms by the frequencies that are obtained from the
GENIA corpus.1 This set of ranked terms is denoted by {T}c-value

ideal . A random baseline for
choosing a term from the category of proteins in {T}c-value

ideal thus approaches to 8900
34077 = 0.261.

The second set of experiments embraces errors caused by the candidate term
extraction process. In order to get a ranked list of terms, sentences of part-of-speech
tagged, lemmatised words from the GENIA corpus are fed to the YATEA system: a state-
of-the-art term extraction system (Aubin and Hamon, 2006).2 Using part-of-speech tag
sequence patterns for the extraction of candidate terms and its internal scoring mechan-
ism, YATEA pulls out a sorted set of 59,988 candidate terms from the GENIA corpus.3

The extracted terms are normalised by converting all their letters to lowercase; as a result,
the size of the set is reduced to 58,558. This set of ranked terms is denoted by {T}YATEA

YATEA .
Amongst the set of 34,077 manually annotated terms derived as the gold standard form
the GENIA corpus, 15,023 terms do not appear in {T}YATEA

YATEA ; 4,622 of these terms are from
the concept category of proteins. As a result, {T}YATEA

YATEA contains only 4,278 terms that are
once annotated as protein terms. Hence, a random baseline for choosing a term from the
concept category of protein in {T}YATEA

YATEA approaches to 4278
58558 = 0.073. Table 5.3 provides

a statistical summary of {T}YATEA
YATEA . As can be inferred, errors caused by a candidate term

extraction process can halve the recall in the extraction of a particular class of terms.
To measure the performance of the proposed method, two figures of merit are

employed: precision at n (P@n) and non-interpolated precision at i (NAPi). P@n shows the

1The c-value score’s definition is given by Equation 3.7, Chapter 3.
2Version 0.622, obtained from http://search.cpan.org/~thhamon/Lingua-YaTeA/lib/

Lingua/YaTeA.pm.
3YATEA can be configured differently to boost its performance. For example, the part-of-speech se-

quence patterns for extracting candidate terms can be specified, or a set of verified terms may be provided
to the system to enhance this process. However, to simplify reproducing the reported results, the system’s
default configuration is employed.

http://search.cpan.org/~thhamon/Lingua-YaTeA/lib/Lingua/YaTeA.pm
http://search.cpan.org/~thhamon/Lingua-YaTeA/lib/Lingua/YaTeA.pm
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DenotationDescription

{T}c-value
ideal

The set of terms extracted from the manual annotations in the GENIA corpus
and sorted by the c-value score. This set does not contain invalid terms. The
statistics for this set are reported in Table 5.2. Figure 5.5 shows the baseline
performance computed in this set.

{T}YATEA
YATEA

The set of candidate terms extracted and sorted by the YATEA system from
the GENIA corpus. This set contains both valid and invalid terms. The
statistics for this set are given in Table 5.3. Performance of protein term
extraction in this set is reported in Figure 5.6.

Table 5.4: A summary of the resources that are employed in the experiments.
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Figure 5.5: Baseline performance for protein term extraction in the {T}c-value
ideal ranked terms: (a)

shows the proportion of protein terms in the top 5000 entries of the set of ranked candidate terms—
that is, precision at n (P@n) for 1 ≤ n ≤ 5000; (b) shows the performance using non-interpolated
precision at i (i.e., NAPi) for 1 ≤ i ≤ 8900; note that for i = 8900, recall is equal to 1.0. In both
(a) and (b), a random baseline (computed by a simulation) is shown, too.

proportion of protein terms in the set of top n candidate terms that are sorted in descending
order by their assigned weights (i.e., cw given by Equation 5.1). NAPi, however, reports
the average of precision for finding the first i protein terms in a set of sorted terms (see
Chapter 3, page 98). For the baseline, I report P@n and NAPi that are observed in {T}c-value

ideal

and {T}YATEA
YATEA , which are plotted in Figures 5.5 and 5.6. Table 5.4 gives a summary of the

datasets and the obtained baselines employed for the evaluation.

5.3.2 Parameters for the Configuration of the Context-Window

In the proposed methodology, once candidate terms are extracted, they are represented
as vectors. The incremental method explained in Section 5.2.1 is employed to collect
and represent the co-occurrences of candidate terms and words in context-windows. The
co-occurrences of candidate terms and words, however, can be collected from context-
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100 1,000 5,000
0

0.07

0.2

0.3

0.5

n (#Top Terms)

P
@

n

YATEA

Random

(a)

100 1000 4278 (i.e., recall=1.0)
0

0.07

0.19

0.27

0.5

i (#Protein Terms)

N
A

P
i

YATEA

Random

(b)

Figure 5.6: Baseline performance for protein term extraction in YATEA’s extracted ranked terms
(i.e., {T}YATEA

YATEA ): (a) the proportion of protein terms in the top 5000 entries of the set of ranked
candidate terms—that is, P@n for 1 ≤ n ≤ 5000; (b) non-interpolated precision (i.e., NAPi) for
1 ≤ i ≤ 4278; note that for i = 4278, recall is equal to 1.0. In both (a) and (b), random baselines
are also shown.

windows that are configured differently.

5.3.2.1 Direction

In the proposed distributional method, context-windows can be configured differently re-
garding the position of the candidate terms in them and the direction in which they are
stretched. Context-windows can be expanded (a) to the left side of a candidate term to
collect the co-occurrences of the candidate term with preceding words in each sentence
of the corpus, (b) to the right side to collect co-occurrences with the succeeding words or
(c) around the candidate term, that is, in both left and right directions. For instance, in
Figure 5.3, words that are placed in rectangles show context-windows that expand around
candidate terms.

5.3.2.2 Size

The size of context-windows can also be modified—that is, the extent of the region of
either side of a term for collecting and counting its co-occurrences with neighbouring
words. For instance, Figure 5.3 illustrates context-windows of size t = 3 tokens. As
stated in the literature (e.g., see Lenci, 2008; Baroni et al., 2014b), the optimum size of
context-windows can only be established through experiments. However, research reports
show that in contrast to wide context-windows (e.g., a paragraph or a document), narrow
context-windows are more suitable to capture paradigmatic relations such as the intended
concept category association in the proposed term classification task (e.g., Agirre et al.,
2009; Zadeh and Handschuh, 2014c). In the performed experiments, therefore, the size
of context-windows t is limited to 1 ≤ t ≤ 8. The context-windows that expand around a
candidate term are extended symmetrically in both directions.
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5.3.2.3 Sequential order of words

Jones and Mewhort (2007) argue that the sequential order of words expresses information
about lexical classes and grammatical behaviour, and therefore is important in the devel-
opment of a comprehensive distributional semantic model. On the other hand, Landauer
(2002) believes that 80% of the potential information in language is carried by the word
choice regardless of the order in which they appear. He thus concludes that word order can
be neglected in order to simplify the construction of vector spaces and their subsequent
computations.1 The influence of the inclusion of word order information on the perform-
ance of the method is investigated using a technique similar to the permutation technique
proposed in Sahlgren et al. (2008); Recchia et al. (2015). However, instead of relying on
intuition, I propose a mathematical justification based on the framework represented in
Chapter 4.

5.3.2.3.1 Proposed method to capture the sequential order of words

One way to capture information about the sequential order of words in context-windows is
to distinguish the appearances of words in different positions in these context-windows.2

This method could be best explained by giving the following example. In the first
sentence of Figure 5.3, the word technology appears after the target term (i.e., information
extraction) at the position p = 1 of the context-window. In the last sentence listed in
Figure 5.3, the word technology also occurs, however, before the target term at the position
p = −2. In this example, if the information about the sequential order of words is ignored,
then the word technology is represented by only one standard basis ~st of the vector space—
that is, one dimension of the model. The co-occurrence of the target term information
extraction and the context word technology in these two sentences is then denoted by the
coordinates ~st of the vector that represent the target term.

However, to capture information about the sequential order of words, the two
appearances of the word technology must be distinguished and represented separately
in the model. In doing so, additional dimensions must be appended to the model—one
dimension per position per word. In the given example, this means that the occurrence of
the word technology at the position p = 1 in context-windows must be presented by one
standard basis ~sa of the model, whereas the occurrence at the position p = −2 must be
represented by another standard basis ~sb of which a , b. In the same way, if the word
technology appears at a location x other than p = 1 and −2 in context-windows, then it
must be represented by an additional standard basis ~sx of the vector space of which x ,
a , b. The co-occurrence of the target term information extraction and the context word

1Representing information about the order of words in context-windows usually entails appending ad-
ditional dimensions to the underlying distributional model. Hence, computing similarities can demand more
resources.

2Other methods are also conceivable, for instance, using n-grams, or even an additional vector space
model that only captures the sequential order of words (e.g., as suggested by Jones and Mewhort, 2007).
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technology at the two positions p = 1 and −2 is denoted by, respectively, the coordinates
~sa and ~sb of the vector that represents the target term information extraction.

If a vector space is constructed using the above-mentioned one-dimension-per-
context-element methodology, then capturing information about the sequential order of
words in context-windows drastically escalates the curse of dimensionality—as sugges-
ted by Landauer (2002), it is thus often discarded. However, as implied in Chapter 4,
this problem can be easily obviated using random projections for the construction of a
model. According to the principles discussed in Chapter 4 and based on the descrip-
tion given above, in order to capture the word order information in a vector space that
is constructed using random projections, appearances of a word at different positions of
context-windows are captured by assigning them to different word vectors.

Let us revisit the example given above and construct the model using random
projections such as explained earlier in Section 5.2. If the word order information is
ignored, then the word technology is assigned exactly to one word vector ~wtechnology, and
both of its co-occurrences with the target term information extraction at p = 1 and −2
are captured by adding ~wtechnology to the term vector ~tinformation extraction that represents the
target term at the reduced dimensionality—that is, ~tinformation extraction = ~tinformation extraction +

~wtechnology+~wtechnology.
But, in order to model the sequential order of words, the appearances of the word

technology at different positions in context-windows must be distinguished by assigning
them to different word vectors. In the example above, the appearance of the word techno-
logy at p = 1 is captured by vector~wp=1

technology and its appearance at p = −2 is captured by
~wp=−2

technology of which ~wp=−2
technology , ~w

p=1
technology. The co-occurrences of the word technology and

the term information extraction are then captured by accumulating these two different vec-
tors to~tinformation extraction—that is, ~tinformation extraction = ~tinformation extraction+~wp=1

technology+~wp=−2
technology.

Both vectors ~wp=1
technology and ~wp=−2

technology are required to be stored for later usages—for ex-
ample, to capture the co-occurrence of the word technology at p = 1 with another candid-
ate term.

The method suggested above, however, is hampered by its required space for the
storage and retrieval of word vectors. Instead of creating several word vectors for rep-
resenting appearances of one word at different positions of context-windows and storing
them separately for later usages, one can use the permutation technique.

The main idea is that shuffling randomly created word vectors creates new ran-
dom vectors that can be used to represent context words at various positions in context-
windows. For example, this shuffling can be defined using a permutation function. This
permutation function is defined using the location of context words in context-windows.
In my implementation, a circular shift function serves as the permutation function (as
suggested in Sahlgren et al., 2008, too). If p is the number of tokens before or after a
candidate term and a word in a context-window (i.e., the position of the word in context-
windows), then the word vector ~w that represents the word is shifted p times circularly to
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left or right prior to adding it to the candidate term’s term vector. This circular shift of ~w
results in a new random vector without the need to generate and store a new one. In this
way, while the word order information is captured, the storage of additional word vectors
is avoided. Hence, the method’s space complexity enhances.1

5.3.3 Classification Parameters

In addition to various configurations of context-windows, the performance of the proposed
term classification method is affected by the k-nn framework’s parameters: (a) neighbour-
hood size selection (i.e., the value of k), (b) the size of the set of reference vectors (denoted
by |Rs|)—that is, the number of training instances employed for the classification—and
(c) the choice of similarity metric.

5.3.3.1 Neighbourhood size selection

The performance of k-nn is largely dependent on the value of k—that is, the neighbour-
hood size selection in the classification process. Using Bayesian mathematics, it is veri-
fied that if an infinite number of training samples are available (i.e., |Rs| → ∞), then using
a large value of k will result to the best-performing classification model (see Hastie et al.,
2009, chap. 13). In the absence of a large Rs, in the employed memory-based learning
framework, a small value for k can lead to over-fitting and sensitivity to noise, while a
large neighbourhood estimation can reduce the discriminatory power of the classifier.

For a fixed Rs, if the underlying probability distribution of the term vectors in the
vector space was known, the optimum k could be calculated. However, the underlying
probability distribution is unknown and difficult to estimate. Therefore, the optimal value
of k is usually obtained through experiments. To study the effect of neighbourhood size
selection on the method’s output, the performance is reported when k is set to different
values. For instance, one can be interested in investigating whether the choice of k affects
the choice for the best-performing context-windows configuration—that is to say, can one
choose the most discriminative context-windows irrespective of the value of k?

5.3.3.2 Similarity metrics

Last but not least, the choice of the method for similarity measurement between vectors—
that is, s(v, ri) in Equation 5.1, thus its underlying metric—is another important factor that
influences the method’s performance. For instance, in a classification task similar to the
proposed method, Weeds et al. (2005) suggest that the city block distance outperforms
other similarity metrics such as the cosine measure. Therefore, the performance of clas-
sifiers that exploit different similarity and distance measures are reported. As implied in

1From an alternative perspective beyond the scope of this thesis, the suggested method is known as a
derandomisation technique.
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Section 5.2, the method’s performance is assessed when using the Euclidean distance, the
city block distance and the cosine similarity.

5.3.4 Setting the Parameters of Random Projection

For the experiments that are carried over the {T}c-value
ideal and {T}YATEA

YATEA , vector spaces are con-
structed at the reduced dimensionality of m = 2000. Considering the small number of
candidate terms in these datasets—that is, 34, 077 and 59, 988, respectively for {T}c-value

ideal

and {T}YATEA
YATEA —and based on the justification provided in Chapter 4, it can be verified that

the dimensionality m = 2000 is large enough to construct models that preserve the relative
pairwise distances between vectors in the original high-dimensional spaces.

For the construction of the `2-normed vector spaces at the reduced dimension-
ality of m = 2000, word vectors with 8 non-zero elements are employed. This means
that in the reported experiments, the value of α from Equation 5.2 is set to 250. For the
`1-normed vector space construction, however, word vectors with 40 non-zero elements
are employed–that is, α = 50. Considering the proposed approach for collecting co-
occurrence frequencies, the original dimensionality of a vector space constructed in the
employed datasets (shown by n) is a product of the size of the vocabulary in the GENIA
corpus (i.e., 19,576, as reported in Table 5.1). Moreover, a model constructed at the ori-
ginal dimension is extremely sparse: depending on the configuration of context-windows,
the sparseness of vectors (shown by β) in the reported experiments is β < 10−3. Therefore,
the suggested values for α are conservative choices that meet the criteria for the number of
non-zero elements—that is, O(n) and O(βn) for the `2 and `1-normed spaces, respectively.

Considering the number of candidate terms that are represented in the constructed
m-dimensional models and the original dimensionality of them (i.e., n), setting m > 2000
or using more non-zero elements in word vectors would not affect the obtained perform-
ances.

5.3.5 Evaluation Methodology

To find the best performing models, an exhaustive search is performed over the Cartesian
product of a set of values for the parameters of (a) context-widows configuration (Sec-
tion 5.3.2), and (b) the k-nn classification framework (Section 5.3.3).

In the reported empirical results, the proposed methodology in Section 5.2.1 is
performed to construct several vector spaces from each combination of values that must
be set for the configurations of context-windows. These vector spaces are constructed
for the list of candidate terms in {T}c-value

ideal and {T}YATEA
YATEA (see Table 5.4), in which the co-

occurrence frequencies are collected from the GENIA corpus. Besides normalising text
to lower-case letters and a Penn Treebank tokenisation, no other text preprocessing is
performed. To summarise, context-windows are configured for:
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• three directions: left, right, and around candidate terms;
• the size of context-windows is limited to t tokens, for 1 ≤ t ≤ 8 ;
• inclusion and exclusion of information about sequential order of words.

Therefore, for each dataset 48 different vector spaces are constructed to encompass all the
combinations of the values stated above.

The described term classification methodology in Section 5.2 is then employed to
assign scores to the candidate terms in all the constructed vector spaces. The scoring pro-
cedure is also repeated for the combination of a set of values which can be set differently
in the classification:

• three values for the neighbourhood size selection, that is k = 1, 7, 25;
• three similarity measures: cosine, the Euclidean, and the city block distance.

The top n = 100 entries from the list of ranked candidate terms in {T}c-value
ideal and {T}YATEA

YATEA are
chosen to form the Rs. Hence, for each vector space, the scoring procedure is repeated 9
times in order to obtain 9 sets of ranked terms. The observed NAPi in the obtained sets is
then employed for their comparison and choosing the best combination of the evaluated
parameters of the method.

5.4 Empirical Evaluations

5.4.1 Evaluation in {T}c-value
ideal : The Point of Departure

The first series of experiments are carried over {T}c-value
ideal when the classification process is

performed using a set of reference terms Rs of size 100 (i.e., |Rs|=100). In this experiment,
Rs comprises of the top 100 entries from the ranked set of terms in {T}c-value

ideal of which 36
entries are positive examples (i.e., protein terms). The experiments are duplicated for all
of the context-window’s configurations and the classification’s parameters as explained in
Section 5.3.5.

Tables 5.5, 5.6, and 5.7 report the results in detail when similarities are calculated
using the cosine measure, the Euclidean distance, and the city block distance, respectively.
The method’s performance is denoted by the non-interpolated precision (i.e., NAPi) for the
identification of protein terms at i = 200 and i = 8900; note that NAPi=200 and NAPi=8900

denotes the method’s performance when recall is 0.02 and 1.0, respectively. In these
tables, the observed NAPi over the list of sorted terms in {T}c-value

ideal is reported as a baseline
(see Figure 5.5). Figures 5.7 and 5.8 summarise and plot the reported numbers in these
tables.

First and foremost, a glance at Figures 5.7a and 5.7b, and Figures 5.8a and 5.8b,
indicates that choosing the best performing configuration for the method’s parameters
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Context NAPi=200 NAPi=8900

di
r

si
ze k k

1 7 25 1 5 25

A
ro

un
d

1 0.647 0.709 0.673 0.348 0.362 0.356
2 0.713 0.811 0.775 0.385 0.383 0.387
3 0.766 0.798 0.761 0.408 0.411 0.408
4 0.784 0.79 0.75 0.414 0.411 0.414
5 0.766 0.774 0.727 0.409 0.407 0.414
6 0.769 0.725 0.721 0.402 0.401 0.406
7 0.771 0.72 0.691 0.399 0.397 0.397
8 0.763 0.709 0.658 0.397 0.394 0.392

L
ef

t

1 0.489 0.732 0.776 0.318 0.337 0.335
2 0.68 0.727 0.855 0.369 0.355 0.377
3 0.753 0.842 0.86 0.394 0.388 0.394
4 0.82 0.762 0.813 0.402 0.393 0.398
5 0.841 0.796 0.764 0.405 0.402 0.402
6 0.833 0.83 0.775 0.408 0.404 0.403
7 0.841 0.821 0.81 0.407 0.405 0.405
8 0.828 0.817 0.787 0.403 0.406 0.405

R
ig

ht

1 0.55 0.596 0.387 0.337 0.347 0.335
2 0.686 0.602 0.657 0.327 0.351 0.348
3 0.819 0.81 0.736 0.357 0.372 0.361
4 0.82 0.834 0.643 0.36 0.381 0.364
5 0.805 0.78 0.714 0.361 0.374 0.367
6 0.816 0.753 0.677 0.366 0.371 0.362
7 0.823 0.721 0.648 0.369 0.368 0.361
8 0.816 0.69 0.654 0.367 0.365 0.357

Baseline 0.364 0.273

NAPi=200 NAPi=8900

k k
1 7 25 1 5 25

0.568 0.58 0.466 0.311 0.354 0.341
0.694 0.773 0.58 0.322 0.371 0.359
0.666 0.821 0.657 0.33 0.378 0.37
0.648 0.752 0.681 0.337 0.372 0.37
0.65 0.701 0.65 0.339 0.366 0.366

0.688 0.665 0.678 0.345 0.359 0.362
0.717 0.713 0.663 0.344 0.356 0.357
0.73 0.724 0.666 0.346 0.351 0.352

0.489 0.732 0.776 0.318 0.337 0.335
0.663 0.744 0.803 0.338 0.38 0.393
0.719 0.724 0.831 0.362 0.394 0.398
0.653 0.77 0.73 0.375 0.4 0.405
0.746 0.7 0.688 0.375 0.387 0.398
0.761 0.696 0.652 0.374 0.382 0.397
0.78 0.748 0.641 0.362 0.381 0.387
0.78 0.705 0.649 0.363 0.375 0.387
0.55 0.596 0.387 0.337 0.347 0.335

0.692 0.592 0.543 0.343 0.355 0.346
0.687 0.801 0.598 0.342 0.363 0.35
0.677 0.746 0.638 0.337 0.364 0.355
0.645 0.819 0.643 0.338 0.364 0.355
0.67 0.783 0.651 0.337 0.357 0.352

0.691 0.708 0.673 0.333 0.35 0.348
0.703 0.718 0.676 0.331 0.342 0.344

0.364 0.273
(a) Sequential Order of Words Discarded (b) Sequential Order of Words Encoded

Table 5.5: The performances observed over the {T}c-value
ideal when |Rs| = 100 and similarities are com-

puted using the cosine between vectors. The performance is shown with regards to the observed
NAPi, for i = 200 (i.e., recall = 0.02) and i = 8900 (i.e., recall = 1.0). The baseline shows the
computed NAP when terms are sorted using the c-value (see Figure 5.5); (a) denotes the perform-
ance of models that ignore the sequential order of words in context-windows, whereas (b) shows
the performance when this information is encoded.
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(b) NAPi=8900

Figure 5.7: The results obtained over {T}c-value
ideal when |Rs| = 100: The y-axis shows the observed

performances (i.e., NAPi) for the identification of protein terms when the method’s parameters
are set differently. Each box in the sub-figures denotes the performance for each of the employed
similarity metric. In these boxes, the x-axis shows the size of context-windows. The letters A,
L, and R denote the direction in which context-windows are stretched (i.e., respectively, Around,
Left, or the Right side of the candidate terms). Models that encode word order information are
denoted using the ~� on top of the letters. The size of letters, however, shows the value of k. The
smallest size denotes k = 1 (black colour), while the largest size denotes k = 25 (grey colour); the
medium size represents k = 7 (blue colour). In these plots, the minimum value of y-axis shows the
baseline.

is subject to the chosen i for computing and reporting NAPi as the performance meas-
ure. Besides this observation, these figures suggest that obtaining the best performance
is drastically dependant on the choice of similarity metrics (e.g., by comparing the aver-
age of the obtained performances over parameters of the method). If the performance is
measured using NAPi at a small i such as 200 in this experiment—that is, if the inten-
tion is the extraction of a small number of terms and hence precision is more important
than recall—then the Euclidean distance seems to be a more desirable choice than the
city block distance or the cosine measure. However, for NAPi for a large i, for example
i = 8900 (i.e., if a high recall is intended), then the cosine similarity seems to be a more
robust choice than the other evaluated similarity metrics.

When the method’s performance is evaluated using NAPi=200, then the Euclidean
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Context NAPi=200 NAPi=8900

di
r

si
ze k k

1 7 25 1 5 25

A
ro

un
d

1 0.712 0.821 0.817 0.375 0.342 0.374
2 0.769 0.836 0.828 0.367 0.357 0.364
3 0.799 0.855 0.838 0.378 0.364 0.374
4 0.794 0.788 0.829 0.363 0.353 0.361
5 0.776 0.803 0.827 0.36 0.339 0.366
6 0.742 0.755 0.806 0.327 0.313 0.363
7 0.704 0.756 0.788 0.352 0.334 0.349
8 0.68 0.753 0.79 0.346 0.332 0.342

L
ef

t

1 0.764 0.868 0.863 0.354 0.344 0.354
2 0.794 0.86 0.874 0.378 0.365 0.377
3 0.811 0.833 0.869 0.377 0.375 0.378
4 0.756 0.84 0.872 0.375 0.355 0.375
5 0.789 0.832 0.89 0.383 0.376 0.377
6 0.744 0.81 0.879 0.381 0.362 0.39
7 0.718 0.794 0.871 0.367 0.363 0.375
8 0.745 0.783 0.872 0.343 0.337 0.361

R
ig

ht

1 0.709 0.718 0.718 0.321 0.333 0.307
2 0.67 0.732 0.823 0.312 0.307 0.314
3 0.804 0.746 0.782 0.345 0.332 0.328
4 0.792 0.764 0.772 0.342 0.327 0.328
5 0.738 0.75 0.761 0.339 0.33 0.329
6 0.725 0.792 0.785 0.34 0.334 0.326
7 0.687 0.788 0.757 0.325 0.329 0.329
8 0.729 0.767 0.75 0.326 0.342 0.328

Baseline 0.364 0.273

NAPi=200 NAPi=8900

k k
1 7 25 1 5 25

0.761 0.732 0.753 0.331 0.361 0.329
0.768 0.783 0.764 0.321 0.368 0.324
0.805 0.793 0.78 0.344 0.363 0.336
0.789 0.825 0.81 0.351 0.378 0.359
0.785 0.816 0.81 0.327 0.367 0.353
0.741 0.807 0.793 0.339 0.358 0.346
0.72 0.812 0.796 0.32 0.35 0.347

0.643 0.778 0.785 0.333 0.341 0.349
0.764 0.868 0.863 0.354 0.344 0.354
0.739 0.752 0.751 0.356 0.322 0.348
0.733 0.769 0.733 0.37 0.324 0.363
0.744 0.802 0.734 0.376 0.339 0.374
0.681 0.741 0.73 0.363 0.333 0.362
0.697 0.757 0.77 0.367 0.327 0.371
0.645 0.733 0.771 0.352 0.329 0.356
0.644 0.738 0.81 0.353 0.326 0.361
0.709 0.718 0.718 0.321 0.333 0.307
0.714 0.77 0.735 0.332 0.33 0.309
0.76 0.766 0.723 0.341 0.334 0.315

0.777 0.79 0.742 0.35 0.34 0.327
0.752 0.76 0.758 0.341 0.322 0.33
0.721 0.781 0.767 0.337 0.325 0.337
0.702 0.756 0.763 0.326 0.328 0.335
0.716 0.751 0.786 0.322 0.329 0.334

0.364 0.273
(a) Sequential Order of Words Discarded (b) Sequential Order of Words Encoded

Table 5.6: The results observed in {T}c-value
ideal when |Rs| = 100 and similarities are computed using

the Euclidean distance. The presentation format is similar to Table 5.5.

Context NAPi=200 NAPi=8900

di
r

si
ze k k

1 7 25 1 5 25

A
ro

un
d

1 0.77 0.521 0.674 0.342 0.259 0.321
2 0.806 0.535 0.718 0.302 0.259 0.281
3 0.766 0.471 0.699 0.3 0.253 0.284
4 0.751 0.516 0.799 0.306 0.262 0.295
5 0.714 0.548 0.613 0.3 0.262 0.289
6 0.679 0.535 0.583 0.278 0.263 0.269
7 0.689 0.589 0.58 0.293 0.264 0.283
8 0.675 0.598 0.602 0.273 0.261 0.266

L
ef

t

1 0.792 0.558 0.72 0.355 0.302 0.335
2 0.764 0.575 0.664 0.33 0.274 0.306
3 0.801 0.543 0.597 0.316 0.264 0.291
4 0.773 0.529 0.578 0.307 0.269 0.284
5 0.755 0.556 0.608 0.295 0.266 0.275
6 0.721 0.538 0.603 0.292 0.266 0.275
7 0.705 0.563 0.594 0.29 0.265 0.275
8 0.709 0.602 0.608 0.288 0.267 0.275

R
ig

ht

1 0.473 0.556 0.652 0.311 0.298 0.288
2 0.586 0.449 0.581 0.276 0.243 0.25
3 0.603 0.473 0.57 0.286 0.251 0.257
4 0.677 0.446 0.621 0.27 0.242 0.25
5 0.69 0.439 0.52 0.286 0.264 0.249
6 0.67 0.566 0.612 0.291 0.265 0.267
7 0.642 0.594 0.743 0.294 0.257 0.284
8 0.673 0.635 0.758 0.28 0.256 0.267

Baseline 0.364 0.273

NAPi=200 NAPi=8900

k k
1 7 25 1 5 25

0.86 0.529 0.836 0.355 0.265 0.329
0.786 0.564 0.719 0.324 0.27 0.299
0.75 0.525 0.577 0.303 0.267 0.284

0.766 0.534 0.633 0.323 0.273 0.303
0.738 0.545 0.675 0.297 0.267 0.28
0.73 0.544 0.585 0.301 0.266 0.288

0.723 0.614 0.606 0.284 0.27 0.274
0.715 0.585 0.617 0.283 0.269 0.276
0.792 0.558 0.72 0.355 0.302 0.335
0.784 0.699 0.647 0.341 0.266 0.33
0.769 0.743 0.666 0.339 0.29 0.317
0.73 0.615 0.609 0.31 0.285 0.293

0.708 0.603 0.552 0.294 0.279 0.282
0.733 0.561 0.596 0.294 0.273 0.283
0.711 0.576 0.596 0.29 0.271 0.278

0.7 0.551 0.577 0.3 0.268 0.289
0.473 0.556 0.652 0.311 0.298 0.288
0.543 0.481 0.437 0.276 0.243 0.247

0.6 0.519 0.558 0.283 0.257 0.254
0.751 0.515 0.602 0.282 0.252 0.263
0.716 0.482 0.433 0.281 0.246 0.263
0.733 0.51 0.551 0.268 0.247 0.251
0.715 0.52 0.518 0.265 0.247 0.251
0.692 0.485 0.514 0.287 0.261 0.269

0.364 0.273
(a) Sequential Order of Words Discarded (b) Sequential Order of Words Encoded

Table 5.7: The performances observed in {T}c-value
ideal when |Rs| = 100 and similarities are computed

using the city block distance. The presentation format is similar to Table 5.5.
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Figure 5.8: The results obtained over {T}c-value
ideal when |Rs| = 100: shown are the obtained results

grouped by the type of similarity metrics and values of k (i.e., the rows), as well as the direction
and the size of context-windows (i.e., the columns). The letters A, L, and R denote the direction
in which context-windows are stretched (i.e., respectively, Around, Left, or the Right side of the
candidate terms). Models that encode word order information are denoted using the ~� on top of the
letters. The size of squares in these plots denote the value for NAPi at i = 200 (i.e., Figure 5.8a),
and i = 8900 (i.e, Figure 5.8b).

distance seems to be the least sensitive similarity metric to the changes in the values of
the remaining method’s parameters—that is, it shows the least variance in the perform-
ance. Although this behaviour of the Euclidean distance changes when the performance is
measured using NAPi=8900. When it comes to choosing a value for the neighbourhood size
in the classification process (i.e., k), the city block distance is the most sensitive measure.
Except k = 1, the city block distance does not show an acceptable performance in these
experiments.

In these experiments, context-windows that extend to the left side or around the
terms usually outperform context-windows that only extend to the right of candidate
terms. If the obtained performances are averaged independently of the value of k, the
employed similarity metric, and the size of context-windows, then context-windows that
extend around terms are preferable to those that only extend to the left side of candidate
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Figure 5.9: Observed differences in the performance of method when the sequential order of words
are encoded in the context-windows. The letters A, L, and R denote the three directions of Around,
Left, or Right side of the candidate terms, respectively. Accordingly, the notation X → ~X shows
the difference in the performance of the models constructed by collecting co-occurrences at the
direction X before and after encoding information about the sequential order of words. An increase
in the performance is marked by a circle, whereas a reduction is shown by a triangle. The size of
shapes shows the intensity.

terms. As can be inferred from the reported results, encoding information about the se-
quential order of words in context-windows does not necessarily enhance the observed
result. The effect of encoding this information in the observed performances is shown in
detail in Figure 5.9. As shown in the figure, except when using the city block distance
for measuring similarities, encoding word order information has a negative impact on the
performance.

Choosing the best size for context-windows is also largely dependant on the chosen
similarity metric and the direction in which context-windows are extended. However, ac-
cording to the obtained results, context-windows of size 3 ≤ t ≤ 6 tokens are often
amongst the top performers. As shown in Figure 5.7, the city block distance is again
an exception in which a small size for context-windows—that is, 1 ≤ t ≤ 2 tokens—
outperforms larger sizes of context-windows. Although the cosine measure on average
results in a higher performance (particularly at 100% recall), using a distance metric is
preferable to the use of cosine similarity if a small recall is targeted (see Figure 5.10).

5.4.1.1 Using an entity tagger as an additional baseline

To have a better understanding of the reported performance measures, an additional baseline
is introduced. The same set of annotated candidate terms (i.e., Rs) used in the experi-
ment reported in Section 5.4.1 is employed to train a biomedical named entity recogniser.
Namely, the ABNER system, an entity tagger based on conditional random fields, is em-
ployed. ABNER exploits a variety of orthographic and contextual features designed for
the analysis of biology text (Settles, 2005). If ABNER is trained using all the manual
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Figure 5.10: The performance of similarity metrics across the complete range of recall values: (a)
shows NAPi for 0 < i ≤ 8900 (i.e., the complete range of values for recall) for the three employed
similarity metrics for particular configurations of context-windows. For recall less than 2%, as
shown with minute details in (b), the choice of a distance measure results in a better performance
than the use of cosine.

annotation that are provided for the mentions of terms in the GENIA corpus, it achieves a
recall of 77.8 and precision of 68.1 for extracting protein terms. Consequently, it is one of
the top-performing bio-entity recognition systems for extracting protein terms (see Kim
et al., 2004, for the performance comparison of ABNER and several other entity taggers
in a shared task).

To compute the second baseline, ABNER is trained using the mentions of the
protein term that appear in Rs. To ensure that the provided training dataset for the de-
velopment of the tagger’s model is noise-free, manual annotations in the GENIA corpus
are used to mark each of the term mentions. The 36 protein terms in Rs are mentioned
1,321 times in the GENIA corpus. Therefore, it is worthwhile mentioning that although
the entity tagger is developed by the same number of distinct terms as appeared in Rs, in
practice, preparing the training dataset for the development of the entity tagger’s model
requires more manual effort than preparing Rs.

After training the ABNER tagger, the obtained model is reapplied to the same cor-
pus (i.e., GENIA) in order to extract additional mentions of protein terms. The extracted
terms using ABNER are collected in a set and the number of distinct valid and invalid
protein terms are reported as the baseline. The resulting model can only identify an addi-
tional 16 protein terms out of the remaining 8,864 terms in the corpus. Simply put, and as
suggested in the introduction of this chapter, the 1,321 mentions of the 36 protein terms
in Rs are not sufficient for the training of the ABNER system and extracting additional
terms from the concept category of proteins.
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5.4.2 Evaluation of the Method in {T}YATEA
YATEA

:
The Method’s Performance in the Presence of Noise

In this section, the observed results are reported when the method is applied to {T}YATEA
YATEA .

As stated earlier, 67% of candidate terms in {T}YATEA
YATEA are invalid terms (see Table 5.3).

Hence, the performed experiments let us study the effect of noise caused by the process of
candidate term extraction in the method’s performance. Therefore, the evaluation process
described in the previous section is repeated over the ranked set of candidate terms in
{T}YATEA

YATEA using |Rs| = 100 (similar to the previous experiment). As a result, Rs contains 22
protein terms (i.e., positive examples). Tables 5.8, 5.9, and 5.10 report the performance
using NAPi at i = 98 (i.e., recall =0.02) and i = 4278 (i.e., recall =1) when similarities are
calculated using the cosine measure, the Euclidean distance, and the city block distance,
respectively. Apart from the method’s performance for the identification of protein terms,
these tables report NAPi when the goal is to extract valid terms.

In this set of experiments, the cosine similarity outperforms both the Euclidean
and the city block distance with a large margin. Although the method shows an acceptable
performance for a small recall such as 0.02% (i.e., NAPi=98 as shown in Figure 5.11a), its
performance drastically drops for a complete recall (i.e., NAPi=4278). If the goal is to
extract all the protein terms in the corpus, the method underperforms the ATR’s ranking
baseline and it shows a performance similar to the random baseline (Figure 5.11b). As
reported in the tables, the obtained scores for sorting candidate terms using the proposed
method also decreases the number of valid terms in the obtained ranked sets of terms.

The major sources of errors in this set of experiments are invalid candidate terms
in which a valid protein term appears nested. For example, in the performed experiments,
I kappa B is a protein term, which often appears at the top of the obtained ranked lists.
In addition to I kappa B, {T}YATEA

YATEA contains candidate terms such as control of I kappa B-
alpha proteolysis, inhibitor I kappa B, endogenous I kappa B, and so on, of which many
are invalid terms.1 Since these candidate terms share a similar context with valid protein
terms, they also appear at the top of the obtained ranked sets. As a result, their presence in
the list of candidate terms deteriorate the method’s performance. As suggested previously,
combining a unithood measure with the score generated by the classification method can
help to alleviate these errors, particularly for large recall values.

Independently of the direction in which context-windows are extended, for the
nearest neighbour (i.e., k = 1), a positive correlation between the size of context-window
and the performance of the method (both for detecting protein terms and valid candidate
terms) is observable. However, when k = 25 and the context-windows are larger than

1For instance, in {T}YATEA
YATEA , I kappa B appears nested in 221 terms.
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Context NAPi=98 NAPi=4278
di

r

si
ze k k

1 7 25 1 7 25

A
ro

un
d

1 0.55(0.77) 0.31(0.81) 0.22(0.69) 0.11(0.36) 0.13(0.42) 0.14(0.42)
2 0.62(0.79) 0.49(0.8) 0.47(0.75) 0.13(0.36) 0.15(0.41) 0.16(0.42)
3 0.68(0.85) 0.47(0.73) 0.66(0.77) 0.14(0.37) 0.15(0.39) 0.17(0.4)
4 0.68(0.85) 0.39(0.69) 0.53(0.73) 0.14(0.37) 0.15(0.38) 0.16(0.39)
5 0.69(0.86) 0.48(0.8) 0.54(0.8) 0.15(0.37) 0.15(0.38) 0.16(0.38)
6 0.68(0.88) 0.37(0.71) 0.41(0.61) 0.14(0.37) 0.14(0.37) 0.15(0.37)
7 0.71(0.87) 0.41(0.71) 0.39(0.59) 0.14(0.37) 0.14(0.37) 0.14(0.37)
8 0.71(0.87) 0.37(0.7) 0.37(0.57) 0.14(0.37) 0.13(0.36) 0.14(0.37)

L
ef

t

1 0.36(0.5) 0.24(0.67) 0.41(0.8) 0.1(0.39) 0.12(0.43) 0.13(0.46)
2 0.6(0.78) 0.39(0.73) 0.46(0.8) 0.13(0.4) 0.14(0.43) 0.16(0.45)
3 0.69(0.85) 0.49(0.71) 0.48(0.77) 0.13(0.38) 0.15(0.42) 0.16(0.43)
4 0.72(0.85) 0.49(0.71) 0.56(0.79) 0.13(0.37) 0.15(0.41) 0.17(0.43)
5 0.74(0.86) 0.52(0.72) 0.53(0.8) 0.14(0.37) 0.15(0.4) 0.17(0.42)
6 0.76(0.89) 0.47(0.63) 0.47(0.69) 0.14(0.37) 0.15(0.4) 0.16(0.41)
7 0.78(0.91) 0.41(0.62) 0.44(0.71) 0.14(0.37) 0.14(0.39) 0.16(0.41)
8 0.78(0.91) 0.41(0.63) 0.43(0.67) 0.15(0.38) 0.14(0.39) 0.15(0.4)

R
ig

ht

1 0.36(0.41) 0.22(0.41) 0.16(0.37) 0.09(0.31) 0.1(0.33) 0.09(0.33)
2 0.42(0.43) 0.28(0.41) 0.41(0.58) 0.09(0.32) 0.1(0.32) 0.1(0.33)
3 0.45(0.46) 0.33(0.52) 0.38(0.59) 0.09(0.32) 0.1(0.33) 0.11(0.33)
4 0.49(0.5) 0.37(0.58) 0.53(0.69) 0.1(0.33) 0.11(0.33) 0.12(0.34)
5 0.55(0.6) 0.35(0.57) 0.43(0.71) 0.1(0.33) 0.11(0.33) 0.12(0.35)
6 0.55(0.68) 0.28(0.54) 0.37(0.63) 0.1(0.34) 0.1(0.33) 0.11(0.34)
7 0.57(0.69) 0.29(0.51) 0.34(0.58) 0.11(0.34) 0.11(0.33) 0.11(0.34)
8 0.59(0.74) 0.32(0.56) 0.3(0.54) 0.11(0.34) 0.11(0.34) 0.11(0.34)

Baseline 0.273(0.87) 0.12(0.5)

NAPi=98 NAPi=4278

k k
1 7 25 1 7 25

0.42(0.56) 0.25(0.52) 0.28(0.56) 0.09(0.34) 0.11(0.37) 0.11(0.36)
0.47(0.6) 0.33(0.55) 0.29(0.46) 0.09(0.34) 0.11(0.37) 0.12(0.36)
0.43(0.58) 0.29(0.49) 0.38(0.53) 0.09(0.33) 0.11(0.35) 0.12(0.34)
0.45(0.6) 0.3(0.51) 0.33(0.5) 0.09(0.33) 0.1(0.34) 0.11(0.34)
0.46(0.63) 0.24(0.47) 0.24(0.41) 0.09(0.33) 0.1(0.33) 0.11(0.33)
0.48(0.64) 0.27(0.45) 0.32(0.45) 0.09(0.34) 0.1(0.34) 0.11(0.34)
0.5(0.66) 0.2(0.38) 0.3(0.43) 0.09(0.33) 0.1(0.33) 0.1(0.33)
0.53(0.65) 0.19(0.37) 0.29(0.44) 0.09(0.33) 0.09(0.33) 0.1(0.33)
0.36(0.5) 0.24(0.67) 0.41(0.8) 0.1(0.39) 0.12(0.43) 0.13(0.46)
0.44(0.5) 0.39(0.61) 0.52(0.65) 0.09(0.32) 0.11(0.37) 0.12(0.37)
0.52(0.68) 0.38(0.47) 0.36(0.5) 0.09(0.34) 0.1(0.35) 0.11(0.35)
0.6(0.72) 0.37(0.5) 0.34(0.59) 0.1(0.34) 0.11(0.36) 0.11(0.35)
0.6(0.73) 0.33(0.51) 0.39(0.59) 0.11(0.34) 0.11(0.36) 0.11(0.35)
0.63(0.77) 0.37(0.61) 0.47(0.77) 0.1(0.34) 0.12(0.36) 0.14(0.4)
0.63(0.79) 0.33(0.56) 0.5(0.71) 0.1(0.34) 0.11(0.36) 0.13(0.38)
0.62(0.79) 0.41(0.58) 0.49(0.74) 0.1(0.34) 0.11(0.35) 0.13(0.38)
0.36(0.41) 0.22(0.41) 0.16(0.37) 0.09(0.31) 0.1(0.33) 0.09(0.33)
0.5(0.6) 0.34(0.56) 0.21(0.42) 0.1(0.32) 0.1(0.33) 0.1(0.33)

0.53(0.59) 0.33(0.51) 0.25(0.43) 0.09(0.32) 0.1(0.32) 0.1(0.33)
0.53(0.65) 0.26(0.49) 0.25(0.43) 0.09(0.32) 0.1(0.32) 0.1(0.32)
0.49(0.61) 0.28(0.49) 0.23(0.39) 0.09(0.32) 0.1(0.32) 0.1(0.32)
0.5(0.62) 0.21(0.44) 0.24(0.42) 0.09(0.32) 0.1(0.32) 0.1(0.32)
0.48(0.6) 0.2(0.42) 0.24(0.36) 0.09(0.32) 0.09(0.31) 0.1(0.32)
0.54(0.66) 0.21(0.43) 0.24(0.37) 0.09(0.32) 0.09(0.31) 0.1(0.32)

0.273(0.87) 0.12(0.5)
(a) Sequential Order of Words Discarded (b) Sequential Order of Words Encoded

Table 5.8: The performances obtained over the {T}YATEA
YATEA when |Rs| = 100 and similarities are com-

puted using the cosine between vectors. The performance is shown with regards to the observed
NAP, for i = 98 (i.e., recall = 0.02) and i = 4278 (i.e., recall = 1.0). Parenthesised numbers
show NAP for valid terms. The baseline shows the computed NAP when terms are sorted using the
YATEA’s weighting mechanism (see Figure 5.6); (a) shows the performance of models that ignore
the sequential order of words in context-windows, whereas (b) shows the performance when this
information is encoded.

Context NAPi=98 NAPi=4278

di
r

si
ze k k

1 7 25 1 7 25

A
ro

un
d

1 0.29(0.18) 0.38(0.44) 0.59(0.95) 0.08(0.3) 0.08(0.31) 0.12(0.5)
2 0.27(0.17) 0.29(0.51) 0.6(0.9) 0.07(0.3) 0.08(0.32) 0.12(0.5)
3 0.29(0.18) 0.32(0.79) 0.61(0.84) 0.08(0.3) 0.07(0.38) 0.12(0.45)
4 0.31(0.19) 0.37(0.87) 0.66(0.87) 0.08(0.3) 0.1(0.49) 0.13(0.44)
5 0.3(0.18) 0.38(0.85) 0.65(0.88) 0.08(0.3) 0.1(0.47) 0.14(0.47)
6 0.3(0.18) 0.42(0.86) 0.64(0.88) 0.08(0.3) 0.11(0.47) 0.12(0.39)
7 0.31(0.19) 0.42(0.86) 0.6(0.89) 0.08(0.31) 0.11(0.48) 0.13(0.46)
8 0.31(0.2) 0.46(0.86) 0.59(0.88) 0.08(0.31) 0.12(0.48) 0.12(0.4)

L
ef

t

1 0.36(0.25) 0.61(0.91) 0.34(0.32) 0.08(0.31) 0.09(0.33) 0.09(0.36)
2 0.58(0.52) 0.35(0.33) 0.36(0.34) 0.08(0.31) 0.12(0.4) 0.1(0.38)
3 0.45(0.39) 0.31(0.3) 0.47(0.68) 0.08(0.31) 0.11(0.4) 0.11(0.41)
4 0.35(0.24) 0.3(0.32) 0.36(0.44) 0.08(0.31) 0.11(0.39) 0.1(0.4)
5 0.3(0.2) 0.34(0.36) 0.28(0.3) 0.08(0.31) 0.11(0.4) 0.1(0.4)
6 0.29(0.19) 0.43(0.83) 0.35(0.39) 0.08(0.31) 0.12(0.43) 0.09(0.38)
7 0.28(0.18) 0.47(0.88) 0.33(0.34) 0.08(0.3) 0.11(0.39) 0.09(0.35)
8 0.29(0.26) 0.3(0.37) 0.28(0.28) 0.07(0.3) 0.09(0.38) 0.09(0.36)

R
ig

ht

1 0.41(0.26) 0.47(0.63) 0.61(0.76) 0.08(0.31) 0.08(0.31) 0.09(0.35)
2 0.31(0.19) 0.42(0.84) 0.51(0.79) 0.08(0.31) 0.09(0.44) 0.1(0.43)
3 0.3(0.18) 0.41(0.83) 0.61(0.82) 0.08(0.3) 0.1(0.46) 0.11(0.38)
4 0.31(0.2) 0.45(0.83) 0.59(0.79) 0.08(0.31) 0.11(0.47) 0.11(0.36)
5 0.31(0.19) 0.42(0.83) 0.57(0.77) 0.08(0.31) 0.11(0.48) 0.12(0.44)
6 0.32(0.18) 0.46(0.82) 0.54(0.79) 0.08(0.3) 0.1(0.44) 0.11(0.44)
7 0.3(0.17) 0.47(0.81) 0.53(0.8) 0.08(0.3) 0.1(0.44) 0.11(0.44)
8 0.32(0.18) 0.47(0.8) 0.51(0.8) 0.08(0.3) 0.11(0.46) 0.12(0.45)

Baseline 0.273(0.87) 0.12(0.5)

NAPi=98 NAPi=4278

k k
1 7 25 1 7 25

0.41(0.27) 0.51(0.72) 0.65(0.8) 0.08(0.31) 0.08(0.32) 0.11(0.38)
0.41(0.25) 0.55(0.8) 0.63(0.75) 0.08(0.31) 0.08(0.32) 0.12(0.39)
0.42(0.26) 0.56(0.8) 0.63(0.73) 0.08(0.31) 0.08(0.32) 0.11(0.4)
0.48(0.33) 0.56(0.81) 0.61(0.8) 0.08(0.31) 0.09(0.33) 0.13(0.47)
0.58(0.5) 0.58(0.79) 0.64(0.79) 0.08(0.31) 0.11(0.34) 0.14(0.48)
0.62(0.65) 0.56(0.75) 0.57(0.82) 0.08(0.31) 0.1(0.37) 0.11(0.41)
0.68(0.79) 0.54(0.76) 0.56(0.82) 0.09(0.32) 0.11(0.4) 0.11(0.41)
0.65(0.76) 0.56(0.8) 0.59(0.83) 0.09(0.31) 0.1(0.39) 0.11(0.41)
0.36(0.25) 0.61(0.91) 0.34(0.32) 0.08(0.31) 0.09(0.33) 0.09(0.36)
0.27(0.16) 0.6(0.68) 0.28(0.25) 0.07(0.3) 0.08(0.31) 0.08(0.3)
0.27(0.16) 0.4(0.69) 0.33(0.3) 0.07(0.3) 0.1(0.34) 0.09(0.31)
0.27(0.16) 0.48(0.68) 0.44(0.61) 0.07(0.3) 0.12(0.38) 0.1(0.34)
0.27(0.16) 0.28(0.25) 0.28(0.26) 0.07(0.3) 0.09(0.32) 0.09(0.32)
0.36(0.22) 0.31(0.29) 0.31(0.27) 0.08(0.31) 0.1(0.35) 0.1(0.36)
0.33(0.21) 0.32(0.3) 0.58(0.73) 0.08(0.31) 0.1(0.36) 0.12(0.38)
0.34(0.21) 0.33(0.32) 0.52(0.63) 0.08(0.31) 0.1(0.37) 0.11(0.38)
0.41(0.26) 0.47(0.63) 0.61(0.76) 0.08(0.31) 0.08(0.31) 0.09(0.35)
0.41(0.25) 0.53(0.8) 0.62(0.77) 0.08(0.31) 0.08(0.32) 0.11(0.33)
0.42(0.27) 0.54(0.81) 0.61(0.73) 0.08(0.31) 0.09(0.32) 0.1(0.33)
0.43(0.28) 0.51(0.81) 0.64(0.76) 0.08(0.31) 0.1(0.35) 0.11(0.38)
0.45(0.31) 0.52(0.81) 0.63(0.75) 0.08(0.31) 0.12(0.38) 0.12(0.44)
0.64(0.66) 0.49(0.56) 0.42(0.51) 0.09(0.31) 0.1(0.35) 0.08(0.35)
0.68(0.76) 0.53(0.78) 0.42(0.5) 0.09(0.31) 0.11(0.38) 0.1(0.38)
0.68(0.77) 0.52(0.71) 0.57(0.78) 0.09(0.31) 0.1(0.37) 0.11(0.39)

0.27(0.87) 0.12(0.5)
(a) Sequential Order of Words Discarded (b) Sequential Order of Words Encoded

Table 5.9: The performances observed over the {T}YATEA
YATEA when |Rs| = 100 and similarities are com-

puted using the Euclidean distance.
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Context NAPi=98 NAPi=4278

di
r

si
ze k k

1 7 25 1 7 25

A
ro

un
d

1 0.44(0.33) 0.45(0.59) 0.43(0.62) 0.08(0.31) 0.07(0.34) 0.07(0.35)
2 0.41(0.43) 0.49(0.7) 0.46(0.65) 0.08(0.31) 0.09(0.33) 0.09(0.33)
3 0.37(0.24) 0.51(0.73) 0.49(0.73) 0.08(0.31) 0.09(0.32) 0.09(0.33)
4 0.4(0.24) 0.51(0.77) 0.48(0.76) 0.08(0.31) 0.09(0.34) 0.1(0.34)
5 0.41(0.24) 0.52(0.76) 0.51(0.79) 0.08(0.31) 0.1(0.35) 0.11(0.36)
6 0.4(0.27) 0.49(0.77) 0.48(0.79) 0.08(0.31) 0.1(0.35) 0.1(0.36)
7 0.41(0.27) 0.49(0.77) 0.49(0.79) 0.08(0.31) 0.1(0.36) 0.1(0.36)
8 0.41(0.28) 0.51(0.76) 0.48(0.8) 0.08(0.31) 0.1(0.36) 0.11(0.37)

L
ef

t

1 0.28(0.23) 0.28(0.23) 0.44(0.55) 0.06(0.26) 0.06(0.26) 0.09(0.31)
2 0.3(0.17) 0.42(0.61) 0.61(0.82) 0.08(0.3) 0.08(0.32) 0.09(0.33)
3 0.29(0.16) 0.37(0.5) 0.54(0.78) 0.08(0.3) 0.08(0.31) 0.08(0.32)
4 0.29(0.17) 0.36(0.54) 0.4(0.57) 0.08(0.3) 0.07(0.31) 0.09(0.35)
5 0.28(0.16) 0.39(0.57) 0.45(0.67) 0.08(0.3) 0.08(0.31) 0.09(0.32)
6 0.3(0.17) 0.41(0.59) 0.42(0.66) 0.08(0.3) 0.08(0.31) 0.08(0.32)
7 0.29(0.17) 0.43(0.6) 0.44(0.71) 0.08(0.3) 0.08(0.31) 0.1(0.37)
8 0.28(0.16) 0.41(0.62) 0.44(0.72) 0.08(0.3) 0.08(0.32) 0.1(0.37)

R
ig

ht

1 0.31(0.19) 0.46(0.41) 0.36(0.6) 0.08(0.3) 0.08(0.31) 0.07(0.32)
2 0.38(0.25) 0.49(0.69) 0.39(0.56) 0.08(0.31) 0.09(0.34) 0.08(0.33)
3 0.46(0.41) 0.4(0.51) 0.37(0.5) 0.08(0.31) 0.08(0.32) 0.07(0.32)
4 0.44(0.31) 0.58(0.65) 0.38(0.49) 0.08(0.31) 0.08(0.32) 0.08(0.31)
5 0.39(0.23) 0.46(0.57) 0.38(0.51) 0.08(0.31) 0.09(0.34) 0.08(0.31)
6 0.38(0.22) 0.5(0.63) 0.37(0.49) 0.08(0.31) 0.09(0.32) 0.08(0.31)
7 0.35(0.19) 0.52(0.6) 0.4(0.53) 0.08(0.31) 0.08(0.31) 0.08(0.31)
8 0.32(0.18) 0.58(0.74) 0.44(0.62) 0.08(0.3) 0.08(0.31) 0.09(0.32)

Baseline 0.273(0.87) 0.12(0.5)

NAPi=98 NAPi=4278

k k
1 7 25 1 7 25

0.42(0.27) 0.41(0.61) 0.35(0.59) 0.08(0.31) 0.07(0.34) 0.08(0.36)
0.29(0.16) 0.39(0.53) 0.47(0.62) 0.08(0.3) 0.08(0.32) 0.08(0.33)
0.3(0.16) 0.39(0.48) 0.35(0.43) 0.08(0.3) 0.08(0.3) 0.07(0.3)
0.29(0.17) 0.37(0.49) 0.35(0.44) 0.08(0.3) 0.08(0.3) 0.07(0.3)
0.3(0.17) 0.4(0.51) 0.44(0.54) 0.08(0.3) 0.08(0.31) 0.08(0.3)
0.29(0.19) 0.37(0.43) 0.38(0.41) 0.08(0.31) 0.07(0.3) 0.07(0.3)
0.3(0.18) 0.4(0.45) 0.39(0.45) 0.08(0.3) 0.08(0.3) 0.07(0.3)
0.37(0.41) 0.4(0.47) 0.5(0.56) 0.08(0.31) 0.08(0.31) 0.08(0.31)
0.28(0.23) 0.28(0.23) 0.44(0.55) 0.06(0.26) 0.06(0.26) 0.09(0.31)
0.27(0.16) 0.26(0.17) 0.5(0.68) 0.07(0.3) 0.07(0.3) 0.1(0.33)
0.27(0.16) 0.26(0.16) 0.55(0.69) 0.07(0.3) 0.07(0.3) 0.08(0.31)
0.27(0.16) 0.39(0.58) 0.42(0.56) 0.07(0.3) 0.1(0.37) 0.08(0.3)
0.27(0.16) 0.39(0.51) 0.42(0.56) 0.07(0.3) 0.08(0.31) 0.08(0.31)
0.27(0.16) 0.42(0.49) 0.4(0.54) 0.07(0.3) 0.08(0.3) 0.08(0.3)
0.27(0.16) 0.37(0.49) 0.4(0.55) 0.07(0.3) 0.08(0.3) 0.08(0.31)
0.27(0.16) 0.36(0.51) 0.34(0.44) 0.07(0.3) 0.08(0.31) 0.08(0.33)
0.31(0.19) 0.46(0.41) 0.36(0.6) 0.08(0.3) 0.08(0.31) 0.07(0.32)
0.38(0.24) 0.46(0.68) 0.41(0.68) 0.08(0.31) 0.1(0.37) 0.08(0.33)
0.42(0.38) 0.4(0.52) 0.38(0.49) 0.08(0.31) 0.08(0.32) 0.07(0.32)
0.45(0.32) 0.45(0.59) 0.36(0.46) 0.08(0.31) 0.09(0.33) 0.07(0.31)
0.46(0.47) 0.48(0.49) 0.37(0.45) 0.08(0.31) 0.08(0.31) 0.07(0.31)
0.38(0.24) 0.41(0.5) 0.38(0.51) 0.08(0.31) 0.08(0.31) 0.07(0.31)
0.35(0.2) 0.38(0.48) 0.39(0.5) 0.08(0.31) 0.08(0.31) 0.07(0.31)
0.31(0.18) 0.45(0.57) 0.44(0.59) 0.08(0.3) 0.08(0.32) 0.08(0.32)

0.27(0.87) 0.12(0.5)
(a) Sequential Order of Words Discarded (b) Sequential Order of Words Encoded

Table 5.10: The performances observed over the {T}YATEA
YATEA when |Rs| = 100 and similarities are

computed using the city block distance.
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Figure 5.11: The performances observed in {T}YATEA
YATEA . The performance is reported using NAPi =

98 (i.e., for 2% recall) and NAPi = 4278 (i.e., 100% recall). Similar representation format as
Figure 5.8 is used.
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Figure 5.12: The performances observed in {T}YATEA
YATEA Using |Rs| = 100: NAPi for 1 ≤ i ≤ 4278 (i.e,

various recall points) computed for context-windows of size 5 tokens that extend around candidate
terms. Shown are results obtained for k = 1, 25 and the three similarity scores—that is, the cosine
measure, the Euclidean and the city block distance; (a) shows NAP for 1 ≤ i ≤ 4278, whereas (b)
details the results for 1 ≤ i ≤ 172 (i.e, recall less than 4%).

three tokens, then a low negative correlation between the size of context-windows and the
performance of the method is observable. In these experiments, when the Euclidean or the
city block distance are employed, then using k = 25 results in a more stable performance
across different cut-off points for computing NAPi than k = 1. As shown in Figure 5.12,
if the goal is to extract only a small fraction of protein terms (e.g., 100), then using the
city block or the Euclidean distance in the nearest neighbour framework gives the best
performance. However, the performance of these combinations drops abruptly for larger
recall values.

Similar to the previous experiment, encoding information about the sequential
order of words in the context-windows does not improve the performances, particularly
when using the cosine measure or the city block distance. Moreover, likewise experiments
in {T}c-value

ideal , models constructed by collecting co-occurrences from context-windows that
extend to left side of candidate terms, on average, show the best performances. However,
using context-windows that extend around terms is a more cautious choice than choosing
context-windows extending to the left or right side of candidate terms in the sense that they
show less variance when parameters of the method, including the employed similarity
metric, change.

Similar to the experiments over {T}c-value
ideal , the choice for the context-window’s size

remains dependant on the choices that are made for selecting the rest of the method’s
parameters. If the method’s performance is averaged over k, then using context-windows
of size 3 to 6 tokens is recommend. If k = 1, larger context-windows result in bet-
ter performance; however, if k is large, then extending context-windows to more than 6
tokens reduces the performance. To investigate the similarity of the impact of the context-
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Simialrity Metric k A L R ~A ~L ~R

Cosine
1 0.36 0.81 0.55 0.9 0.89 0.62
7 0.83 0.4 0.81 0.48 0.05 0.07
25 0.81 0.12 0.36 0.67 -0.36 0.33

Euclid
1 -0.4 0.9 -0.25 -0.6 -0.14 -0.07
7 -0.88 0.19 0.41 0.36 0.62 0.0
25 0.57 -0.32 -0.31 -0.4 0.6 -0.5

City block
1 0.33 0.01 0.4 -0.07 0.58 0.57
7 0.17 0.6 0.46 0.11 -0.33 -0.55
25 -0.5 0.4 0.43 0.05 0.78 -0.6

(a) Using NAP at 2% recall.

Simialrity Metric k A L R ~A ~L ~R

Cosine
1 0.6 0.83 0.97 0.21 0.28 0.14
7 0.61 0.21 0.73 0.67 -0.17 0.33
25 0.71 0.01 0.96 0.58 -0.71 0.69

Euclid
1 -0.85 0.29 -0.41 -0.24 -0.52 -0.34
7 -0.86 0.53 0.19 -0.38 0.19 -0.76

25 -0.29 0.44 0.76 0.6 0.24 -0.11

City block
1 0.18 -0.19 -0.52 -0.22 -0.58 -0.25
7 0.65 -0.18 -0.08 0.5 -0.1 -0.16
25 -0.43 -0.09 -0.14 0.08 0.75 -0.23

(b) Using NAP at 100% recall.

Table 5.11: Spearman’s correlation coefficient (rs) between the results obtained in {T}c-value
ideal and

{T}YATEA
YATEA when the context-window’s size used as the ranking variable and the remaining method’s

parameters are fixed. Tables (a) and (b) show the observed rs when performances are computed
using NAP at 2% and 100% recall, respectively.

window’s size on the method’s performance between experiments in {T}YATEA
YATEA and {T}c-value

ideal ,
Table 5.11 reports the Spearman’s coefficient correlation (rs) when the size of context-
windows is considered as the ranking variable.

In these tables, the results obtained in {T}YATEA
YATEA and {T}c-value

ideal are compared when
the method’s parameters, except the size of context-windows, are fixed. Each cell of
Tables 5.11a and 5.11b shows the computed rs between each column in Tables 5.8, 5.9,
and 5.10 (from experiments in {T}YATEA

YATEA ) and the corresponding column in Tables 5.5, 5.6,
and 5.7. Accordingly, if the choice for the best performing size of context-windows is
similar in {T}YATEA

YATEA and {T}c-value
ideal , then a high correlation (i.e., 1) is expected. As shown in

Table 5.11, a high-correlation is observed only when using the cosine measure—that is,
the same size of context-windows in both experiments results in a high performance.

5.4.3 Corpus Size: The Bigger the Better?

As described earlier, independent of the context-window’s configuration for collecting co-
occurrences, due to the Zipfian distribution of terms and words in context-windows, vec-
tors that represent candidate terms are inevitably high-dimensional and sparse (i.e., most
of the elements of vectors are zero). Whereas the high-dimensionality of vectors hinders
the computation of similarities, their sparseness is likely to diminish the discriminatory
power of the constructed distributional model. To overcome the high-dimensionality bar-
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rier, random projections are employed in this research in order to reduce the dimension
of vectors to a fixed certain size. Now that the vectors’ dimension is set to a constant
size, it is hypothesised that enlarging the size of the corpus reduces the number of zero
elements in the vectors, and thus, the performance of the distributional model improves
(e.g., see Bullinaria and Levy (2007), Pantel et al. (2009) as well as Gorman and Curran
(2006b)).

In this section, the interplay between the size of the corpus and choosing the most
discriminating configuration for context-windows in the proposed classification task is
investigated. Two questions are investigated using empirical experiments, including (a)
whether increasing the size of the corpus that is used for collecting co-occurrence fre-
quencies enhances the performance of the classification task and (b) how doing so influ-
ences the choices that are made for configuring context-windows. The GENIA corpus is
thus enlarged by fetching 223,316 abstracts from the PubMed repository,1 of which each
abstract contains at least three of the terms in the employed terminological resource.2

Similar to the previous experiments, besides normalising text to lower-case letters and a
Penn Treebank tokenisation, no other text preprocessing is performed. As a result, the
enlarged corpus has more than 55 million tokens and a vocabulary of size 881,040.

This enlarged corpus contains 9,179,046 additional mentions of the terms ranked
in the {T}c-value

ideal . As expected, the term frequencies in the enlarged corpus has a long tail
distribution—that is, a small number of terms are frequent whereas the majority of terms
are mentioned a few times (Figure 5.13). Using the vector space construction method
explained in Section 5.2.1, the constructed vectors from {T}c-value

ideal are augmented by the
collected co-occurrences from the enlarged corpus. Hereafter, this set of vectors is de-
noted by {T}c-value

Enlarged. Nevertheless, the obtained vectors in {T}c-value
Enlarged are less sparse than

the previously built vectors in {T}c-value
ideal . For example, in {T}c-value

ideal , vectors that are con-
structed by collecting the co-occurrence frequencies from context-windows that extend
by the size of one token around terms are approximately five times sparser than vectors in
{T}c-value

Enlarged that are constructed by collecting the co-occurrence frequencies from context-
windows of the same configuration.3

An identical process employed for term classification in {T}c-value
ideal (see, Section 5.4.1)

is employed in {T}c-value
Enlarged. 48 different vector spaces are constructed, each reflects one of

the possible combinations for context-window’s configuration. The classification is then
performed using three values of k (i.e., k = 1, 7, 25) and the same set of reference vec-
tors (Rs) employed in the experiments reported in Section 5.4.1 (i.e., Rs comprises 100

1Accessible at http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/#Source_files.
2The set of employed abstracts can be retrieved from http://atmykitchen.info/phd/materials/

genia/extended_abstracts.tar.gz.
3Please note that in the proposed method, apart from the size of the corpus employed for collecting

co-occurrences, the sparseness of vectors is also determined by the number of zero and non-zero elements
in word vectors.

http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/#Source_files.
http://atmykitchen.info/phd/materials/genia/extended_abstracts.tar.gz
http://atmykitchen.info/phd/materials/genia/extended_abstracts.tar.gz


170 Chapter 5. Identifying Co-Hyponym Terms: The Method and its Evaluation

1000 20355 34077

101

103

105

Terms sorted by their mention frequency

Fr
eq

ue
nc

y
(l

og
sc

al
e)

Figure 5.13: The frequency of terms in the enlarged corpus: more than 40% of the terms never
appear in the enlarged corpus.

terms of which 36 are positive examples). Tables 5.12, 5.13, and 5.14 report the observed
results when the cosine measure, Euclidean distance, and the city block distance are em-
ployed for computing similarities, respectively. Figure 5.14 plots numbers reported in
these tables.

As shown in Figure 5.14b, likewise the previous experiments and independently
of the size of the input corpus, if NAP is computed for a high recall such as 100%, then the
cosine similarity outperforms both the Euclidean and City block distance. In {T}c-value

ideal and
for NAPi=8900, the best classification performance is observed using models that are built
by collecting co-occurrence frequencies in context-windows of size 4 or 5 tokens that
extend around terms. However, in {T}c-value

Enlarged, models that are built using context-windows
that expand to the left side of the candidate terms outperform models that are built by
collecting co-occurrence frequencies in context-windows that expand around the terms.
In addition, similar to the experiments in {T}c-value

ideal , in {T}c-value
Enlarged, a large value for k results

in a more desirable performance than a small value such as k = 1, too.

Figure 5.15 plots the changes that are observed by enlarging the size of the input
corpus when the performance is measured using NAPi=8900. For instance, when using the
cosine similarity and k = 25 in the model constructed using context-windows of size
6 tokens that neglect word order information and extend only to the left side of terms,
the NAPi=8900 in {T}c-value

Enlarged is 0.461 (see Table 5.12). However, the same classification
parameters and configuration for context-windows in {T}c-value

ideal gives the performance of
0.405 (see Table 5.5). In Figure 5.15, this increase in the performance is marked by a
wide circle at the corresponding position. Accordingly, the plotted results suggest that
when the corpus size increases, the type of employed similarity measure plays a role in
determining the changes in the performances. When similarities are calculated using the
cosine measure, enlarging the size of the corpus enhances the performance. Similarly,
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Context NAPi=200 NAPi=8900

di
r

si
ze k k

1 7 25 1 7 25

A
ro

un
d

1 0.817 0.724 0.714 0.371 0.388 0.389
2 0.61 0.797 0.748 0.395 0.409 0.41
3 0.641 0.69 0.646 0.41 0.416 0.414
4 0.672 0.795 0.656 0.417 0.427 0.421
5 0.686 0.794 0.659 0.416 0.428 0.422
6 0.673 0.781 0.686 0.414 0.428 0.421
7 0.688 0.797 0.723 0.416 0.43 0.42
8 0.698 0.805 0.692 0.416 0.427 0.415

L
ef

t

1 0.643 0.716 0.772 0.333 0.372 0.356
2 0.789 0.81 0.782 0.377 0.401 0.388
3 0.834 0.798 0.808 0.398 0.421 0.417
4 0.851 0.825 0.772 0.415 0.435 0.437
5 0.838 0.823 0.781 0.42 0.445 0.451
6 0.825 0.82 0.807 0.427 0.453 0.458
7 0.813 0.823 0.833 0.426 0.456 0.461
8 0.808 0.85 0.82 0.428 0.456 0.461

R
ig

ht

1 0.765 0.655 0.609 0.349 0.383 0.361
2 0.611 0.819 0.748 0.359 0.389 0.38
3 0.664 0.763 0.641 0.374 0.39 0.382
4 0.681 0.812 0.648 0.385 0.395 0.388
5 0.692 0.837 0.707 0.389 0.397 0.389
6 0.684 0.828 0.705 0.389 0.395 0.39
7 0.708 0.834 0.727 0.39 0.392 0.389
8 0.712 0.844 0.726 0.39 0.392 0.387

Baseline 0.364 0.273

NAPi=200 NAPi=8900

k k
1 7 25 1 7 25

0.748 0.687 0.608 0.357 0.388 0.365
0.703 0.7 0.614 0.369 0.394 0.374
0.691 0.733 0.555 0.373 0.398 0.378
0.676 0.788 0.591 0.375 0.399 0.381
0.657 0.793 0.575 0.376 0.395 0.379
0.642 0.778 0.561 0.373 0.395 0.377
0.63 0.805 0.58 0.372 0.394 0.375

0.625 0.831 0.592 0.372 0.395 0.373
0.643 0.716 0.772 0.333 0.372 0.356
0.574 0.868 0.898 0.323 0.414 0.424
0.711 0.949 0.906 0.347 0.432 0.423
0.731 0.921 0.897 0.373 0.428 0.42
0.777 0.905 0.912 0.369 0.417 0.412
0.806 0.919 0.833 0.384 0.407 0.399
0.843 0.889 0.843 0.374 0.393 0.388
0.845 0.854 0.767 0.371 0.371 0.382
0.765 0.655 0.609 0.349 0.383 0.361
0.747 0.657 0.647 0.361 0.385 0.368
0.744 0.674 0.598 0.369 0.386 0.37
0.727 0.707 0.589 0.369 0.384 0.37
0.698 0.732 0.583 0.368 0.383 0.368
0.68 0.761 0.62 0.366 0.386 0.368

0.666 0.762 0.643 0.365 0.383 0.365
0.651 0.749 0.617 0.365 0.38 0.362

0.364 0.273
(a) Sequential Order of Words Discarded (b) Sequential Order of Words Encoded

Table 5.12: The performances observed over the {T}c-value
Enlarged when |Rs| = 100 and similarities

are computed using the cosine between vectors. Similar to the experiments over {T}c-value
ideal , the

performance is shown with regards to the observed NAPi, for i = 200 (i.e., recall = 0.02) and
i = 8900 (i.e., recall = 1.0).

Context NAPi=200 NAPi=8900

di
r

si
ze k k

1 7 25 1 5 25

A
ro

un
d

1 0.595 0.772 0.742 0.341 0.312 0.329
2 0.639 0.771 0.852 0.349 0.331 0.315
3 0.692 0.752 0.728 0.359 0.325 0.302
4 0.627 0.773 0.71 0.302 0.322 0.298
5 0.621 0.732 0.814 0.333 0.313 0.319
6 0.623 0.783 0.767 0.345 0.32 0.328
7 0.598 0.728 0.742 0.33 0.316 0.31
8 0.59 0.736 0.76 0.322 0.316 0.306

L
ef

t

1 0.605 0.82 0.73 0.314 0.343 0.314
2 0.593 0.777 0.706 0.322 0.338 0.319
3 0.635 0.793 0.637 0.334 0.344 0.323
4 0.66 0.81 0.632 0.339 0.34 0.315
5 0.681 0.788 0.662 0.343 0.341 0.311
6 0.655 0.831 0.667 0.338 0.334 0.31
7 0.64 0.772 0.633 0.336 0.328 0.304
8 0.629 0.772 0.648 0.335 0.322 0.303

R
ig

ht

1 0.638 0.854 0.66 0.287 0.299 0.301
2 0.552 0.85 0.599 0.282 0.305 0.282
3 0.641 0.773 0.697 0.296 0.3 0.293
4 0.556 0.713 0.57 0.279 0.299 0.283
5 0.522 0.744 0.565 0.275 0.301 0.283
6 0.552 0.729 0.773 0.28 0.309 0.298
7 0.542 0.708 0.74 0.276 0.309 0.312
8 0.544 0.727 0.633 0.276 0.313 0.293

Baseline 0.364 0.273

NAPi=200 NAPi=8900

k k
1 7 25 1 5 25

0.682 0.886 0.668 0.292 0.304 0.302
0.694 0.886 0.686 0.296 0.313 0.311
0.698 0.897 0.696 0.297 0.317 0.319
0.683 0.893 0.698 0.296 0.322 0.323
0.672 0.898 0.71 0.291 0.325 0.322
0.657 0.906 0.709 0.292 0.331 0.322
0.618 0.894 0.71 0.286 0.332 0.322
0.609 0.867 0.709 0.282 0.33 0.317
0.605 0.82 0.73 0.314 0.343 0.314
0.646 0.749 0.77 0.335 0.301 0.323
0.663 0.844 0.748 0.327 0.324 0.333
0.694 0.837 0.748 0.344 0.331 0.331
0.743 0.833 0.757 0.351 0.329 0.336
0.716 0.801 0.831 0.347 0.328 0.332
0.742 0.776 0.833 0.349 0.322 0.332
0.693 0.842 0.832 0.337 0.328 0.323
0.638 0.854 0.66 0.287 0.299 0.301
0.634 0.88 0.68 0.285 0.302 0.304
0.623 0.879 0.679 0.286 0.309 0.309
0.635 0.862 0.686 0.285 0.31 0.316
0.638 0.847 0.698 0.282 0.311 0.315
0.635 0.855 0.702 0.284 0.318 0.317
0.603 0.877 0.707 0.281 0.32 0.318
0.582 0.84 0.696 0.279 0.323 0.318

0.364 0.273
(a) Sequential Order of Words Discarded (b) Sequential Order of Words Encoded

Table 5.13: The results observed in {T}c-value
Enlarged when |Rs| = 100 and similarities are computed using

the Euclidean distance.
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Context NAPi=200 NAPi=8900
di

r

si
ze k k

1 7 25 1 5 25

A
ro

un
d

1 0.812 0.789 0.878 0.365 0.295 0.362
2 0.718 0.693 0.816 0.321 0.285 0.293
3 0.601 0.735 0.85 0.304 0.29 0.289
4 0.53 0.826 0.862 0.306 0.305 0.293
5 0.524 0.809 0.846 0.311 0.31 0.29
6 0.486 0.821 0.77 0.313 0.313 0.282
7 0.495 0.807 0.806 0.311 0.309 0.283
8 0.475 0.809 0.772 0.309 0.311 0.28

L
ef

t

1 0.623 0.683 0.624 0.318 0.296 0.296
2 0.665 0.646 0.82 0.311 0.286 0.293
3 0.658 0.667 0.824 0.319 0.305 0.296
4 0.64 0.675 0.837 0.327 0.312 0.305
5 0.606 0.7 0.881 0.32 0.305 0.307
6 0.575 0.731 0.87 0.316 0.305 0.294
7 0.565 0.727 0.896 0.311 0.301 0.294
8 0.575 0.758 0.897 0.309 0.296 0.296

R
ig

ht

1 0.801 0.77 0.806 0.363 0.273 0.347
2 0.581 0.495 0.777 0.302 0.254 0.275
3 0.589 0.613 0.715 0.308 0.267 0.299
4 0.503 0.661 0.826 0.291 0.275 0.287
5 0.453 0.739 0.642 0.282 0.284 0.267
6 0.503 0.696 0.596 0.296 0.297 0.267
7 0.505 0.778 0.597 0.29 0.3 0.266
8 0.496 0.753 0.568 0.295 0.305 0.265

Baseline 0.364 0.273

NAPi=200 NAPi=8900

k k
1 7 25 1 5 25

0.795 0.712 0.725 0.363 0.294 0.307
0.647 0.551 0.565 0.326 0.266 0.305
0.661 0.551 0.783 0.3 0.271 0.29
0.542 0.521 0.698 0.281 0.27 0.281
0.55 0.557 0.815 0.287 0.27 0.297

0.548 0.574 0.673 0.28 0.273 0.278
0.579 0.571 0.64 0.284 0.274 0.276
0.546 0.593 0.623 0.284 0.278 0.274
0.623 0.683 0.624 0.318 0.296 0.296
0.574 0.594 0.62 0.297 0.29 0.294
0.635 0.623 0.644 0.3 0.294 0.288
0.57 0.592 0.725 0.302 0.296 0.293

0.571 0.566 0.615 0.294 0.29 0.284
0.564 0.588 0.605 0.291 0.284 0.284
0.547 0.629 0.59 0.29 0.286 0.279
0.558 0.546 0.548 0.283 0.277 0.275
0.801 0.77 0.806 0.363 0.273 0.347
0.756 0.579 0.839 0.326 0.256 0.293
0.749 0.672 0.845 0.344 0.275 0.329
0.624 0.629 0.758 0.327 0.274 0.331
0.613 0.643 0.644 0.319 0.275 0.303
0.608 0.623 0.691 0.279 0.27 0.273
0.607 0.633 0.612 0.284 0.282 0.267
0.589 0.627 0.553 0.273 0.266 0.265

0.364 0.273
(a) Sequential Order of Words Discarded (b) Sequential Order of Words Encoded

Table 5.14: The results observed in {T}c-value
Enlarged when |Rs| = 100 and similarities are computed using

the city block distance.
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Figure 5.14: The NAPi observed over {T}c-value
Enlarged for i = 200 (i.e., 2% recall) and i = 8900 (i.e.,

recall 100%) shown in (a) and (b), respectively.
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Figure 5.15: Changes in the performance of models caused by increasing the size of the input
corpus. The method’s performance is measured using NAP at 100% recall. The figure shows
the absolute value of the difference between the performance obtained from a model constructed
in {T}c-value

ideal and the corresponding model in {T}c-value
Enlarged. Triangles denote negative change, while

circles show positive change. The size/colour of shapes represents the amount of changes. The
x-axis shows various configurations of context-windows (i.e., size, direction, and encoding word
order information). The y-axis, however, represents classification parameters (i.e., the values of k
and the employed measures for calculating similarities).

the city block distance shows a relatively better performance with larger input corpus.
However, when similarities are measured using the Euclidean distance, an increase in the
size of the corpus can drastically decline the performance.

Figures 5.14a and 5.16, similar to Figures 5.14b and 5.15, show the method’s
performance, however, when it is measured by NAPi=200 (i.e., for the 2% recall). As
shown, if the performance is assessed for a small recall, then all three measures equally
perform well. In this case, increasing the size of the corpus enhances or diminishes the
performance by approximately 20%. Again, the Euclidean distance is more susceptible
to an increase in the corpus size. In contrary, the cosine measure consistently shows a
better performance when the corpus size increases. Results suggest a similar conclusion
for the city block distance. Although in this case, the enhancement is not as steady as the
cosine measure and it depends on the value of k and the context-window’s configuration,
too. Particularly, for k = 1, the performance frequently drops when the size of the input
corpus increases.

In the experiments over {T}c-value
Enlarged, with respect to the relationship between recall

and performance, the behaviour of similarity measures is similar to the previous experi-
ments. If the performance of the method is studied across recall values, city block dis-
tance outperforms the cosine measure then for a small recall. When using the city block
distance, however, as shown in Figure 5.17, the performance drops abruptly as recall
increases. Compared to Figure 5.10 and 5.12, for a number of context-window configur-
ations, enlarging the corpus eminently enhances the performance of the cosine metric at
small recall values and thus makes it a rival to the Euclidean and city block distance in
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Figure 5.16: The changes in the performance of the method caused by increasing the size of the
input corpus when the method’s performance is measured using NAPi=200 (i.e, 2% recall). The
presentation format is similar to Figure 5.15: circles show positive effect whereas triangles show
negative impact on the performance.

tasks that aim for extracting a small number of terms.

Similar to Table 5.11, Table 5.15 reports the Spearman’s coefficient correlation
(rs) when the size of context-window is considered as the ranking variable (see page 168)
and the results obtained in {T}c-value

Enlarged are compared with the results in {T}c-value
ideal . A high

positive correlation for the choice of the best performing sizes of context-windows is
observable between these two experiments only when cosine is employed for computing
similarities and the performance is assessed for a large recall value. Otherwise, as the
Table 5.15 suggests, if the size of the corpus changes, unfortunately the choice for the
size of context-window must be revised to achieve the best performance.

With respect to the effect of encoding information about the sequential order of
words in the models, the observed results in {T}c-value

Enlarged (Figure 5.18) is also inconsistent
with the observations that are made over {T}c-value

ideal (see Figure 5.9), specifically when the
performances are assessed at a recall pint (i.e., NAPi=200). In the experiments over {T}c-value

ideal

for NAPi=200, encoding information about the order of words in context-windows often
worsened the performance of the Euclidean distance and the cosine similarity. However,
this information improves the performance of the city block distance. In contrary, in the
experiments over {T}c-value

Enlarged, encoding information about the order of words improves the
performance of the Euclidean distance, and exacerbates it for the city block distance.
However, for a large recall value (i.e., NAPi=8900), the observed results in both {T}c-value

ideal

and {T}c-value
Enlarged are similar in the sense that models that encode this information are not

among the top performers.
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Figure 5.17: Performance of the similarity metrics over the range of recall values: shown the ob-
served performances of the top performing models in the reported results. Similar to the previous
experiments, when using the Euclidean or city block distance, the performance drops abruptly.
However, if the aim is to extract only a small number of terms such as 100 (i.e., in this example,
approximately a recall less than 1%), then the city block distance outperforms other similarity
metrics.

Simialrity Metric k A L R ~A ~L ~R

Cosine
1 -0.62 0.92 -0.32 -0.82 0.74 -0.53
7 -0.11 0.51 0.39 0.14 -0.04 0.55

25 -0.19 0.08 0.52 -0.65 0.38 -0.03

Euclid
1 0.82 -0.14 0.34 0.9 -0.77 0.36
7 0.22 0.37 -0.88 0.5 0.24 0.26

25 0.13 -0.21 -0.06 0.81 0.07 0.85

City block
1 0.82 0.87 -0.98 0.88 0.74 -0.95
7 0.4 0.39 0.63 -0.11 0.05 0.82

25 0.64 -0.85 -0.39 -0.01 0.25 0.28

(a) Using NAP at 2% recall.

Simialrity Metric k A L R ~A ~L ~R

Cosine
1 0.95 0.98 0.92 0.8 0.84 0.01
7 0.83 0.98 0.85 0.64 0.8 0.66

25 0.94 0.94 0.93 0.96 0.85 0.84

Euclid
1 0.2 0.39 0.18 0.41 0.21 0.3
7 0.53 0.5 0.25 -0.45 0.78 -0.36

25 0.33 0.19 -0.02 0.79 0.54 0.97

City block
1 0.79 0.17 0.72 0.83 0.78 0.68
7 0.77 -0.38 0.15 -0.54 0.75 0.12

25 0.9 -0.25 0.42 0.65 0.76 0.52

(b) Using NAP for %100 recall.

Table 5.15: Shown Spearman’s correlation coefficient (rs) between the results obtained in
{T}c-value

Enlarged and {T}c-value
ideal when the context-window’s size considered as the ranking variable and

the remaining method’s parameters are fixed. Table (a) and (b) shows the observed rs when per-
formances are computed using NAP at 2% and 100% recall, respectively.
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Figure 5.18: The effect of encoding information about the sequential order in the method’s per-
formance when dealing with the enlarged corpus. Results are shown in the same format as Fig-
ure 5.9. An enhancement in the performance is marked by a circle whereas a decrease is shown
by a triangle; the size of the shapes shows the intensity.

5.4.3.1 The effect of enlarging the corpus in the presence of invalid terms

The aim is to investigate whether using a larger corpus can enhance the method’s per-
formance when the classification is carried out in the presence of invalid terms. Vectors
constructed from the set of candidate terms in the {T}YATEA

YATEA are thus augmented by addi-
tional co-occurrence frequencies (hereafter, denote by {T}YATEA

Enlarged ). In the enlarged corpus
{T}YATEA

Enlarged , these candidate terms are mentioned more than two million times. Similar to
the experiments over {T}c-value

Enlarged, these mentions of terms are scanned in order to update the
co-occurrence frequencies of term vectors. Afterwards, a classification process identical
to the one applied to {T}YATEA

YATEA (see Section 5.4.2) is employed to classify the updated vectors
obtained from {T}YATEA

Enlarged .
The method’s performance over {T}YATEA

Enlarged is reported in Tables 5.16, 5.17, and 5.18.
These numbers are plotted in Figure 5.19. To study the effect of enlarging the corpus,
these results are compared with their corresponding values obtained from the earlier ex-
periment over {T}YATEA

YATEA (i.e., results reported in Section 5.4.2; see Figure 5.11). Here,
enlarging the corpus size marginally enhances the best observed performance. Particu-
larly, although enlarging the corpus enhances the discriminatory power of the models, it
does not necessarily improve the method’s ability to filter invalid terms (see NAP for valid
terms reported in Tables 5.16, 5.17, and 5.18; that is, numbers placed in parentheses).

Figure 5.20 plots changes in the method’s performance caused by enlarging the
corpus at 100% recall (i.e., NAPi=4278 in this experiment). Compared to experiments over
{T}c-value

Enlarged (see Figure 5.15), increasing the size of corpus in {T}YATEA
YATEA enhances the perform-

ance disregarding the method’s parameters. However, even with these enhancements, per-
formances remain below the baseline for many combinations of parameters, particularly
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Context NAPi=98 NAPi=4278

di
r

si
ze k k

1 7 25 1 7 25

A
ro

un
d

1 0.74(0.83) 0.35(0.72) 0.32(0.65) 0.13(0.36) 0.13(0.4) 0.15(0.4)
2 0.54(0.69) 0.61(0.81) 0.58(0.77) 0.14(0.36) 0.16(0.4) 0.18(0.4)
3 0.57(0.72) 0.55(0.67) 0.53(0.73) 0.15(0.36) 0.17(0.38) 0.17(0.38)
4 0.62(0.78) 0.57(0.72) 0.49(0.71) 0.15(0.36) 0.17(0.37) 0.17(0.37)
5 0.65(0.78) 0.6(0.68) 0.39(0.62) 0.15(0.35) 0.17(0.37) 0.16(0.37)
6 0.64(0.77) 0.6(0.69) 0.43(0.58) 0.14(0.35) 0.17(0.36) 0.16(0.36)
7 0.65(0.78) 0.64(0.74) 0.42(0.56) 0.14(0.35) 0.17(0.36) 0.16(0.36)
8 0.65(0.78) 0.61(0.72) 0.38(0.54) 0.14(0.36) 0.16(0.36) 0.16(0.36)

L
ef

t

1 0.42(0.51) 0.41(0.71) 0.39(0.71) 0.12(0.39) 0.14(0.45) 0.15(0.49)
2 0.68(0.8) 0.4(0.7) 0.44(0.76) 0.15(0.4) 0.16(0.43) 0.17(0.45)
3 0.74(0.82) 0.59(0.74) 0.45(0.7) 0.15(0.37) 0.17(0.42) 0.18(0.44)
4 0.79(0.86) 0.59(0.68) 0.49(0.65) 0.15(0.37) 0.17(0.4) 0.19(0.41)
5 0.8(0.87) 0.63(0.78) 0.51(0.62) 0.16(0.37) 0.17(0.39) 0.19(0.4)
6 0.78(0.85) 0.56(0.68) 0.43(0.55) 0.15(0.37) 0.17(0.39) 0.18(0.4)
7 0.75(0.84) 0.54(0.64) 0.43(0.56) 0.15(0.36) 0.17(0.38) 0.18(0.39)
8 0.74(0.83) 0.55(0.64) 0.41(0.51) 0.14(0.36) 0.17(0.37) 0.17(0.38)

R
ig

ht

1 0.48(0.53) 0.24(0.43) 0.27(0.53) 0.1(0.32) 0.11(0.33) 0.11(0.35)
2 0.45(0.52) 0.32(0.4) 0.32(0.53) 0.1(0.32) 0.11(0.33) 0.12(0.34)
3 0.47(0.54) 0.35(0.45) 0.31(0.49) 0.1(0.32) 0.12(0.33) 0.12(0.34)
4 0.53(0.6) 0.34(0.44) 0.34(0.54) 0.11(0.33) 0.12(0.33) 0.12(0.34)
5 0.54(0.62) 0.48(0.56) 0.37(0.55) 0.11(0.33) 0.13(0.34) 0.13(0.35)
6 0.56(0.64) 0.43(0.55) 0.47(0.6) 0.12(0.34) 0.13(0.34) 0.13(0.35)
7 0.58(0.66) 0.38(0.53) 0.47(0.6) 0.12(0.34) 0.13(0.34) 0.13(0.35)
8 0.59(0.67) 0.42(0.54) 0.38(0.53) 0.12(0.34) 0.13(0.34) 0.13(0.34)

Baseline 0.273(0.87) 0.12(0.5)

NAPi=98 NAPi=4278

k k
1 7 25 1 7 25

0.49(0.55) 0.21(0.42) 0.27(0.58) 0.1(0.32) 0.11(0.35) 0.12(0.37)
0.49(0.64) 0.2(0.4) 0.3(0.6) 0.1(0.33) 0.11(0.34) 0.13(0.37)
0.49(0.62) 0.21(0.39) 0.3(0.6) 0.1(0.32) 0.11(0.34) 0.13(0.36)
0.48(0.6) 0.26(0.41) 0.32(0.61) 0.09(0.32) 0.11(0.34) 0.13(0.35)
0.47(0.58) 0.29(0.43) 0.34(0.64) 0.09(0.32) 0.11(0.33) 0.13(0.35)
0.46(0.57) 0.32(0.46) 0.33(0.63) 0.1(0.32) 0.11(0.33) 0.12(0.35)
0.46(0.57) 0.28(0.45) 0.32(0.61) 0.09(0.32) 0.11(0.33) 0.12(0.35)
0.46(0.57) 0.27(0.44) 0.36(0.63) 0.1(0.32) 0.11(0.33) 0.12(0.35)
0.42(0.51) 0.41(0.71) 0.39(0.71) 0.12(0.39) 0.14(0.45) 0.15(0.49)
0.66(0.77) 0.47(0.71) 0.48(0.76) 0.13(0.37) 0.14(0.42) 0.13(0.45)
0.66(0.78) 0.46(0.7) 0.47(0.76) 0.12(0.36) 0.14(0.4) 0.12(0.43)
0.67(0.78) 0.54(0.7) 0.45(0.74) 0.12(0.36) 0.15(0.4) 0.12(0.42)
0.67(0.78) 0.47(0.62) 0.42(0.68) 0.13(0.38) 0.15(0.4) 0.12(0.42)
0.68(0.78) 0.44(0.6) 0.42(0.65) 0.13(0.36) 0.13(0.38) 0.12(0.41)
0.68(0.78) 0.38(0.57) 0.4(0.63) 0.12(0.35) 0.12(0.37) 0.12(0.41)
0.63(0.76) 0.44(0.64) 0.36(0.61) 0.11(0.35) 0.12(0.37) 0.11(0.4)
0.48(0.53) 0.24(0.43) 0.27(0.53) 0.1(0.32) 0.11(0.33) 0.11(0.35)
0.56(0.71) 0.21(0.43) 0.3(0.57) 0.11(0.32) 0.11(0.33) 0.12(0.35)
0.54(0.69) 0.22(0.4) 0.32(0.62) 0.1(0.32) 0.11(0.33) 0.12(0.35)
0.53(0.65) 0.21(0.35) 0.33(0.59) 0.1(0.32) 0.11(0.33) 0.12(0.34)
0.51(0.62) 0.26(0.39) 0.3(0.62) 0.1(0.32) 0.11(0.33) 0.12(0.34)
0.5(0.61) 0.32(0.45) 0.32(0.64) 0.1(0.32) 0.11(0.33) 0.12(0.34)
0.49(0.6) 0.34(0.47) 0.33(0.63) 0.09(0.32) 0.11(0.33) 0.12(0.34)
0.48(0.6) 0.36(0.46) 0.31(0.65) 0.09(0.32) 0.11(0.32) 0.12(0.34)

0.273(0.87) 0.12(0.5)
(a) Sequential Order of Words Discarded (b) Sequential Order of Words Encoded

Table 5.16: The performances observed over the {T}YATEA
Enlarged when |Rs| = 100 and similarities are

computed using the cosine between vectors. Similar to the previous experiments, the performance
is reported with respect to the observed NAPi, for i = 98 (i.e., recall = 0.02) and i = 4278 (i.e.,
recall 100%). Numbers placed in parentheses show NAPi when the precision is computed with
respect to the number of valid terms.

Context NAPi=98 NAPi=4278

di
r

si
ze k k

1 7 25 1 7 25

A
ro

un
d

1 0.53(0.74) 0.48(0.66) 0.48(0.58) 0.13(0.43) 0.12(0.48) 0.13(0.37)
2 0.54(0.77) 0.47(0.66) 0.43(0.72) 0.12(0.46) 0.12(0.46) 0.1(0.45)
3 0.49(0.73) 0.5(0.72) 0.52(0.73) 0.11(0.44) 0.11(0.44) 0.11(0.44)
4 0.47(0.7) 0.56(0.75) 0.66(0.81) 0.13(0.36) 0.11(0.44) 0.12(0.37)
5 0.43(0.67) 0.56(0.72) 0.66(0.75) 0.12(0.42) 0.11(0.43) 0.11(0.42)
6 0.42(0.64) 0.57(0.74) 0.46(0.65) 0.11(0.41) 0.11(0.43) 0.1(0.41)
7 0.44(0.64) 0.55(0.68) 0.42(0.63) 0.11(0.41) 0.11(0.43) 0.1(0.41)
8 0.44(0.63) 0.53(0.71) 0.4(0.6) 0.11(0.41) 0.11(0.43) 0.1(0.41)

L
ef

t

1 0.64(0.79) 0.54(0.79) 0.61(0.82) 0.13(0.5) 0.13(0.49) 0.13(0.51)
2 0.63(0.81) 0.58(0.8) 0.58(0.77) 0.13(0.48) 0.14(0.48) 0.13(0.49)
3 0.62(0.76) 0.61(0.79) 0.57(0.78) 0.13(0.46) 0.13(0.46) 0.13(0.47)
4 0.6(0.75) 0.54(0.75) 0.57(0.77) 0.12(0.46) 0.13(0.45) 0.12(0.46)
5 0.6(0.75) 0.59(0.78) 0.53(0.75) 0.12(0.45) 0.12(0.45) 0.12(0.45)
6 0.56(0.74) 0.59(0.78) 0.58(0.78) 0.12(0.41) 0.12(0.44) 0.12(0.42)
7 0.55(0.74) 0.59(0.79) 0.6(0.75) 0.12(0.44) 0.12(0.44) 0.12(0.44)
8 0.56(0.7) 0.54(0.73) 0.53(0.72) 0.11(0.44) 0.11(0.44) 0.11(0.44)

R
ig

ht

1 0.37(0.67) 0.5(0.74) 0.57(0.74) 0.09(0.44) 0.1(0.43) 0.1(0.44)
2 0.39(0.71) 0.51(0.69) 0.32(0.69) 0.1(0.44) 0.1(0.43) 0.09(0.44)
3 0.36(0.69) 0.51(0.75) 0.32(0.68) 0.1(0.44) 0.1(0.43) 0.09(0.43)
4 0.38(0.7) 0.55(0.74) 0.34(0.69) 0.1(0.43) 0.1(0.42) 0.09(0.43)
5 0.38(0.68) 0.58(0.76) 0.36(0.69) 0.1(0.43) 0.11(0.42) 0.09(0.43)
6 0.38(0.68) 0.57(0.7) 0.51(0.72) 0.11(0.42) 0.11(0.4) 0.1(0.42)
7 0.38(0.67) 0.51(0.67) 0.53(0.69) 0.11(0.36) 0.12(0.35) 0.11(0.4)
8 0.39(0.67) 0.49(0.67) 0.49(0.69) 0.1(0.36) 0.1(0.42) 0.09(0.35)

Baseline 0.273(0.87) 0.12(0.5)

NAPi=98 NAPi=4278

k k
1 7 25 1 7 25

0.37(0.69) 0.5(0.76) 0.58(0.76) 0.1(0.45) 0.1(0.45) 0.1(0.45)
0.4(0.69) 0.5(0.77) 0.58(0.76) 0.1(0.44) 0.1(0.44) 0.1(0.45)
0.43(0.68) 0.53(0.78) 0.58(0.76) 0.1(0.44) 0.11(0.44) 0.11(0.44)
0.48(0.72) 0.53(0.76) 0.6(0.75) 0.11(0.44) 0.11(0.43) 0.11(0.44)
0.48(0.71) 0.52(0.76) 0.59(0.75) 0.11(0.43) 0.11(0.43) 0.12(0.44)
0.52(0.7) 0.59(0.76) 0.59(0.76) 0.11(0.34) 0.11(0.43) 0.11(0.34)
0.55(0.72) 0.63(0.75) 0.59(0.76) 0.12(0.37) 0.11(0.43) 0.13(0.36)
0.57(0.75) 0.67(0.74) 0.6(0.76) 0.12(0.39) 0.11(0.42) 0.13(0.38)
0.64(0.79) 0.54(0.79) 0.61(0.82) 0.13(0.5) 0.13(0.49) 0.13(0.51)
0.58(0.71) 0.67(0.78) 0.39(0.7) 0.11(0.37) 0.11(0.33) 0.1(0.35)
0.59(0.78) 0.59(0.79) 0.59(0.71) 0.12(0.41) 0.13(0.39) 0.11(0.38)
0.56(0.75) 0.64(0.75) 0.65(0.77) 0.13(0.43) 0.14(0.42) 0.13(0.41)
0.57(0.72) 0.69(0.76) 0.69(0.82) 0.13(0.42) 0.13(0.41) 0.13(0.42)
0.53(0.68) 0.66(0.73) 0.67(0.8) 0.13(0.4) 0.12(0.39) 0.12(0.42)
0.58(0.7) 0.51(0.58) 0.6(0.67) 0.12(0.42) 0.12(0.41) 0.12(0.41)
0.48(0.69) 0.51(0.58) 0.57(0.69) 0.11(0.42) 0.12(0.41) 0.11(0.41)
0.37(0.67) 0.5(0.74) 0.57(0.74) 0.09(0.44) 0.1(0.43) 0.1(0.44)
0.39(0.68) 0.53(0.77) 0.58(0.76) 0.1(0.44) 0.1(0.44) 0.1(0.45)
0.42(0.71) 0.54(0.77) 0.59(0.76) 0.1(0.44) 0.1(0.44) 0.11(0.44)
0.44(0.71) 0.54(0.77) 0.59(0.75) 0.11(0.44) 0.11(0.44) 0.11(0.44)
0.47(0.73) 0.52(0.76) 0.6(0.76) 0.11(0.44) 0.11(0.43) 0.11(0.44)
0.49(0.73) 0.53(0.77) 0.6(0.76) 0.11(0.43) 0.11(0.43) 0.11(0.44)
0.52(0.75) 0.56(0.77) 0.62(0.77) 0.11(0.43) 0.11(0.43) 0.11(0.44)
0.52(0.75) 0.56(0.76) 0.61(0.76) 0.11(0.42) 0.11(0.43) 0.12(0.42)

0.27(0.87) 0.12(0.5)
(a) Sequential Order of Words Discarded (b) Sequential Order of Words Encoded

Table 5.17: The results observed in {T}YATEA
Enlarged when |Rs| = 100 and similarities are computed using

the Euclidean distance.
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Context NAPi=98 NAPi=4278

di
r

si
ze k k

1 7 25 1 7 25

A
ro

un
d

1 0.51(0.69) 0.67(0.8) 0.53(0.74) 0.1(0.36) 0.1(0.34) 0.09(0.35)
2 0.65(0.77) 0.52(0.67) 0.56(0.73) 0.1(0.36) 0.09(0.31) 0.1(0.35)
3 0.56(0.69) 0.58(0.71) 0.58(0.72) 0.1(0.36) 0.1(0.32) 0.1(0.35)
4 0.52(0.7) 0.59(0.7) 0.57(0.7) 0.1(0.37) 0.1(0.34) 0.1(0.36)
5 0.51(0.67) 0.46(0.59) 0.52(0.68) 0.1(0.37) 0.1(0.35) 0.1(0.36)
6 0.48(0.66) 0.51(0.6) 0.56(0.71) 0.1(0.35) 0.1(0.36) 0.1(0.33)
7 0.47(0.64) 0.49(0.61) 0.54(0.71) 0.11(0.39) 0.1(0.35) 0.11(0.38)
8 0.49(0.68) 0.5(0.61) 0.5(0.7) 0.11(0.38) 0.1(0.36) 0.11(0.36)

L
ef

t

1 0.28(0.21) 0.72(0.85) 0.41(0.72) 0.06(0.26) 0.09(0.32) 0.07(0.29)
2 0.57(0.71) 0.55(0.74) 0.5(0.71) 0.1(0.36) 0.1(0.35) 0.09(0.32)
3 0.58(0.73) 0.62(0.73) 0.5(0.7) 0.1(0.35) 0.11(0.33) 0.09(0.32)
4 0.54(0.71) 0.64(0.74) 0.47(0.7) 0.1(0.35) 0.11(0.33) 0.09(0.33)
5 0.53(0.7) 0.6(0.73) 0.49(0.68) 0.1(0.35) 0.11(0.34) 0.1(0.34)
6 0.47(0.64) 0.53(0.7) 0.47(0.64) 0.1(0.34) 0.1(0.33) 0.09(0.34)
7 0.44(0.63) 0.58(0.7) 0.47(0.64) 0.1(0.36) 0.1(0.33) 0.1(0.35)
8 0.48(0.67) 0.53(0.64) 0.48(0.62) 0.1(0.36) 0.1(0.32) 0.1(0.35)

R
ig

ht

1 0.54(0.7) 0.52(0.65) 0.32(0.57) 0.09(0.35) 0.09(0.35) 0.07(0.33)
2 0.4(0.54) 0.4(0.51) 0.41(0.54) 0.08(0.33) 0.08(0.33) 0.08(0.31)
3 0.54(0.64) 0.48(0.58) 0.59(0.65) 0.1(0.34) 0.09(0.33) 0.09(0.32)
4 0.56(0.71) 0.42(0.6) 0.51(0.71) 0.1(0.33) 0.1(0.33) 0.09(0.31)
5 0.58(0.73) 0.5(0.63) 0.57(0.65) 0.1(0.33) 0.1(0.33) 0.09(0.31)
6 0.55(0.71) 0.48(0.63) 0.54(0.64) 0.1(0.33) 0.09(0.32) 0.09(0.31)
7 0.52(0.7) 0.44(0.62) 0.58(0.69) 0.1(0.33) 0.09(0.33) 0.09(0.32)
8 0.53(0.71) 0.43(0.61) 0.55(0.66) 0.1(0.34) 0.1(0.34) 0.09(0.32)

Baseline 0.273(0.87) 0.12(0.5)

NAPi=98 NAPi=4278

k k
1 7 25 1 7 25

0.56(0.77) 0.55(0.7) 0.37(0.7) 0.1(0.37) 0.08(0.32) 0.08(0.36)
0.49(0.71) 0.52(0.67) 0.45(0.73) 0.09(0.34) 0.09(0.32) 0.09(0.33)
0.46(0.7) 0.45(0.54) 0.49(0.71) 0.09(0.33) 0.09(0.32) 0.09(0.31)
0.44(0.61) 0.4(0.55) 0.46(0.64) 0.09(0.32) 0.09(0.31) 0.09(0.31)
0.43(0.65) 0.43(0.62) 0.5(0.66) 0.09(0.31) 0.09(0.31) 0.09(0.3)
0.45(0.65) 0.51(0.66) 0.41(0.6) 0.08(0.3) 0.09(0.31) 0.08(0.3)
0.41(0.63) 0.49(0.66) 0.39(0.58) 0.08(0.31) 0.09(0.32) 0.08(0.31)
0.42(0.59) 0.36(0.53) 0.39(0.55) 0.08(0.31) 0.08(0.31) 0.08(0.3)
0.28(0.21) 0.72(0.85) 0.41(0.72) 0.06(0.26) 0.09(0.32) 0.07(0.29)
0.42(0.64) 0.43(0.6) 0.45(0.67) 0.09(0.35) 0.09(0.29) 0.09(0.35)
0.42(0.66) 0.49(0.73) 0.4(0.51) 0.09(0.31) 0.09(0.3) 0.08(0.3)
0.43(0.69) 0.49(0.67) 0.47(0.68) 0.1(0.33) 0.09(0.33) 0.09(0.31)
0.4(0.59) 0.41(0.51) 0.46(0.68) 0.09(0.31) 0.08(0.3) 0.09(0.3)
0.46(0.68) 0.5(0.61) 0.43(0.66) 0.09(0.31) 0.09(0.3) 0.09(0.31)
0.42(0.68) 0.48(0.65) 0.44(0.69) 0.09(0.32) 0.09(0.31) 0.09(0.32)
0.4(0.62) 0.46(0.64) 0.4(0.66) 0.09(0.32) 0.09(0.31) 0.09(0.32)
0.54(0.7) 0.52(0.65) 0.32(0.57) 0.09(0.35) 0.09(0.35) 0.07(0.33)
0.43(0.66) 0.43(0.62) 0.39(0.51) 0.09(0.37) 0.09(0.38) 0.08(0.3)
0.49(0.64) 0.4(0.62) 0.35(0.46) 0.08(0.3) 0.08(0.31) 0.08(0.3)
0.5(0.63) 0.39(0.61) 0.44(0.5) 0.09(0.32) 0.09(0.34) 0.08(0.3)
0.46(0.6) 0.46(0.61) 0.38(0.59) 0.09(0.35) 0.09(0.34) 0.09(0.32)
0.46(0.62) 0.49(0.64) 0.44(0.58) 0.08(0.31) 0.09(0.31) 0.08(0.31)
0.46(0.62) 0.51(0.63) 0.43(0.57) 0.08(0.31) 0.08(0.3) 0.08(0.3)
0.47(0.62) 0.48(0.6) 0.44(0.6) 0.09(0.31) 0.09(0.31) 0.08(0.31)

0.27(0.87) 0.12(0.5)
(a) Sequential Order of Words Discarded (b) Sequential Order of Words Encoded

Table 5.18: The results obtained in {T}YATEA
Enlarged when |Rs| = 100 and similarities are computed using

the city block distance.
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Figure 5.19: The NAPi observed in {T}YATEA
Enlarged for i = 98 (i.e., 2% recall) and i = 4278 (i.e., recall

100%) are shown in (a) and (b), respectively.
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Figure 5.20: Changes in the performance of the method caused by increasing the size of the input
corpus when the performance is measured using NAP for 100% recall in the experiments over
{T}YATEA

Enlarged . Shown is the absolute value of the difference between the performance obtained from a
model constructed in {T}YATEA

YATEA and the corresponding model in {T}YATEA
Enlarged . Triangles denote negative

change whereas circles show positive change. The size/colour of shapes represents the amount
of changes. The x-axis shows various configurations of context-windows. The y-axis represents
classification parameters.
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Figure 5.21: The changes in the performance caused by increasing the size of the input corpus
when the method’s performance is measured using NAPi=200 (i.e, 2% recall) over {T}YATEA

Enlarged . The
presentation format is similar to Figure 5.20: circles show positive effects whereas triangles show
negative impacts.

when similarities are computed using the Euclidean and the city block distance. Simil-
arly, Figure 5.21 shows how enlarging the corpus effects the observed performances at a
small recall point such as NAPi=98 (i.e., recall %2). As shown, compared to the experi-
ments over {T}c-value

Enlarged (see Figure 5.16), enlarging the corpus has a more steady positive
effect on the discriminatory power of the constructed models when the classification task
is accomplished for a set of candidate terms that contain invalid terms.

With an exception to the size of context-windows, parameters that gives in the best
performance in {T}YATEA

YATEA also results the best performance in {T}YATEA
Enlarged . In both {T}YATEA

YATEA and
{T}YATEA

Enlarged , the most discriminative models are built using context-windows that extend to
the left side of candidate terms. In contrast to experiments over {T}YATEA

YATEA , in the experi-
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ments over {T}YATEA
Enlarged extending context-windows more than 5 tokens often diminishes the

performance. The cosine metric on average shows the best performance; in this case,
a small k results in the best performance at small recall points whereas large k must be
chosen at large recall points (e.g., k = 1 at 2% recall and k = 25 at 100% recall, respect-
ively).

5.4.4 Evaluating Parameters Across Concept Categories

Terms are often classified in several categories of concepts; therefore, the identification
of co-hyponym terms can go beyond one concept category. For instance, in the domain
of molecular biology (and accordingly in the GENIA corpus), several categories of terms
(e.g., cell line, cell type, etc.) other than protein are conceived. The question here is that
whether the same configuration of the context-window and the classification’s parameters
can be used for identify terms from different concept categories. That is to say, if a model
shows the best performance for identifying a category of terms such as protein, would it
be also the top performer for extracting terms that belong to other categories such as , cell
line, and cell type?

To answer the questions asked above, the reported evaluation in the Section 5.4.1
over {T}c-value

ideal are repeated; however, for identifying terms that are classified under the
concept category of cell type and cell line (i.e., terms that are annotated as G#cell_type
and G#cell_line in the GENIA corpus, respectively). Table 5.19 shows statistics for
these two categories of term in the corpus. Similar to the description given in Section 5.3
for protein terms, terms that are annotated at least once as cell type or cell line are collec-
ted from the corpus. Those terms that are annotated in one additional category are marked
as polysemous.

Accordingly, when extracting terms that belong to the concept category of cell
type and cell line, the random baseline approaches to 2097

34077 = 0.061 and 2261
34077 = 0.066,

respectively. Figure 5.22 also shows the c-value ranking baselines (i.e., the baselines com-
puted using the set of ranked terms in {T}c-value

ideal ). As shown, at the small recall point of 2%
(i.e., NAPi=42 for cell type and NAPi=45 for cell line), the c-value ranking baseline is 0.255
and 0.134 for the cell type and cell line categories, respectively. However, at 100% recall
(i.e., NAP at i = 2097 and i = 2261 for terms in the category of cell type and cell line,
respectively), the performance of the c-value baseline is similar to the random baseline.
Since terms that belong to the category of cell line are less frequent than cell type, they
are given lower ranks by the c-value measure. As a result, although the number of distinct
terms annotated as cell line is larger than cell type, the computed c-value baseline for cell
line is less than cell type.

A classification process identical to the one employed for identifying protein terms
in Section 5.4.1 is carried out for extracting terms that belong to the category of cell type
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Category Frequency (mentions) #Distinct Entry #Polysemous Entry
Cell Type 8,257 2,097 178
Cell Line 5,944 2,261 154

Table 5.19: Shown are the statistics of the co-hyponym terms in the two categories of cell type and
virus in the GENIA corpus. Polysemous entries are subset of distinct entries.

100 1,000 2,000
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n (#Top Terms)

P
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Cell Type

Cell Line
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Recall

N
A

P
i
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Figure 5.22: Baseline performances when extracting terms from the categories of cell type and
cell line in {T}c-value

ideal ranked terms: (a) shows the proportion of terms in these categories in the top
2000 entries in {T}c-value

ideal (i.e., P@n for 1 ≤ n ≤ 2000); (b) shows the performance computed by
NAPi for the complete range of recall values—that is, i = 2, 097 and i = 2261 for terms in the
category of cell type and cell line, respectively.

and cell line. As shown in Figure 5.22a, the employed Rs (i.e., the top 100 c-value ranked
terms) contains 14 terms from the cell line category and 22 terms from the cell type
category. The obtained results are plotted in Figures 5.23 and 5.24.

As an initial inspection of the results shows, answering the questions asked above
is not straight forward, particularly, at small recall points. Assuming that the method’s
parameters are fixed, then the performance appears to be sensitive to the chosen targeted
category of concepts. That is to say, to obtain the best performances for identifying each
category of co-hyponyms terms, often context-windows must be reconfigured with respect
to the evaluated parameters. For instance, at 2% recall, if similarities are computed using
the cosine measure, then context-windows that extend around the terms shows the best
performance for identifying cell type terms (Figure 5.23a). However, under the similar
conditions, context-windows that extend to the left side of terms shows the best perform-
ance for identifying cell line terms (Figure 5.24a).

When it comes to the choice of choice of k in the classification process, a similar
conclusion as to the parameters of context-windows can be drawn, too. For different
categories of concepts, the best performances are obtained using different values of k
(e.g., k = 1 in Figure 5.23a vs. = 7 in Figure 5.24a). However, concerning the choice
of similarity metric, the observations are predominantly comparable across categories of
concepts. Except for the small recall values, the cosine measure outperforms the other
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Figure 5.23: Performance over{T}c-value
ideal for extracting terms from the cell type category. The

notation is similar to previous figures: letters show the direction in which context-windows are
extended; their size/colour denote the value of k, and the ~� implies encoding information about
words order. The y-axis’s minimum value shows the c-value baseline.
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Figure 5.24: Performance over {T}c-value
ideal for extracting terms from the category of cell line. The

y-axis’s minimum value shows the c-value baseline.
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evaluated metrics (see discussions related to Figures 5.10, 5.12, and 5.17).
The experiments are also repeated over the enlarged corpus—that is, {T}c-value

Enlarged.
The obtained performances are abridged in Figure 5.25 and 5.26, which also corroborate
the conclusions drawn above.

A comparison between the results that are plotted earlier in Figures 5.23 and 5.24,
and the results reported in Figures 5.25 and 5.26 (i.e., comparing the method’s perform-
ance in {T}c-value

ideal and {T}c-value
Enlarged) leads to a discussion similar to the one proposed in Sec-

tion 5.4.3: enlarging the corpus does not necessarily enhance the observed performances.
Taking the results reported throughout this section into consideration, it becomes evident
that the effect of enlarging the corpus not only depends on the configuration of context-
windows and the chosen values for the classification’s parameters (as suggested in Sec-
tion 5.4.3), but also on the targeted category of concepts. For instance, when the method’s
performance is investigated at 100% recall and the cosine measure is employed to com-
pute similarities, enlarging the corpus has a positive effect on the performance when ex-
tracting terms that belong to the category of cell type (compare Figures 5.23b and 5.25b).
However, under the same conditions, the result is the opposite when extracting cell line
terms—that is, a decrease in the performance is observed (compare the cosine section of
Figures 5.24b and 5.26b).

5.4.5 Averaging Performances Across Concept Categories

The construction of a vector space model and configuring it for a particular category of
concepts would result in the best possible performance, as shown in the previous section.
However, this practice cannot be feasible for a few reasons. The construction of a model,
even with a reduced dimensionality, demands computational resources that may not be
available in order to construct a model for category of concepts. It is therefore likely
that a single model is employed to identify a variety of co-hyponymy relationships in an
application. In the context of this chapter, for example, a single model could be used to
identify terms from the categories of protein, cell type, and cell line. One way to choose
a configuration for this model is to use the average of performances across the categories.

In this section, the average performance of the method across the concept categor-
ies of protein, cell type, and cell line are reported when the parameters of the context-
window and the classification process are set differently. To do so, similar to the evalu-
ation of an information retrieval system in a task that involves a set of queries (e.g., as sug-
gested by Manning et al., 2009, chap. 8), the average of the arithmetic mean of recorded
non-interpolated average precisions (i.e., NAPi) is employed as a single-figure measure of
the method’s performance across categories of concepts. This arithmetic mean average of
performances (MAP) is simply the sum of the observed NAPi for the three aforementioned
categories of terms divided by the number of categories (i.e., 3 in here).

For each of the evaluated datasets, the observed MAP is reported for the two re-
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Figure 5.25: The method’s performance over {T}c-value
Enlarged for extracting terms in the category of cell

type.

2 4 6 8
0.13

0.4

0.5

0.6

0.7

0.8
0.85
0.9

A

A A
A A A A A

A

A

A
A

AA

A

A

A

A

AA
A

AA

A

L

L
L L L L

L L

L
L

L

L
L

L
L

L

L

LL

LL
LL

L

R

R
R

R R
R R R

R

R
R

R
RR

R
R

RRRR
R

RR
R

~A ~A ~A ~A ~A ~A ~A ~A

~A

~A

~A
~A~A~A

~A
~A

~A~A~A~A~A~A

~L
~L ~L

~L ~L ~L
~L

~L

~L
~L

~L ~L
~L

~L

~L~L
~L

~L

~L
~L~L

~R ~R ~R ~R ~R ~R ~R ~R

~R

~R

~R
~R

~R
~R ~R ~R

~R

Cosine

2 4 6 8

A

A

A A
A A

A
A

A

AAAAA
A

A

AAAAAA
AA

L L L L L L L
L

L

L
L L L L L L

LL
LL

LL
LL

R

R
R

R R
R R R

RRRR
RR

R
R

RRRRRRRR
~A ~A ~A ~A ~A

~A
~A ~A

~A~A~A~A
~A
~A
~A~A

~A~A~A~A~A~A~A~A

~L ~L
~L
~L
~L ~L ~L

~L~L ~L
~L
~L
~L
~L
~L
~L

~L
~L
~L

~L~L
~L~L
~L

~R
~R
~R
~R
~R ~R ~R

~R
~R ~R ~R ~R ~R

~R ~R ~R

~R~R~R~R~R~R~R~R

Euclid

2 4 6 8

A

A A
A

A

A A A

A

A
A

A
AA

AA

A

AA
AA

A
AA

L L L L

L L L L

L
L

L

L L

L

L

L
L

L

L
LLLLL

R

R

R

R
R R

R
R

RR
RRRRRR

RR
RRRR

RR
~A ~A ~A ~A ~A ~A ~A

~A
~A
~A~A

~A~A~A~A
~A

~A
~A~A~A

~A~A~A~A

~L
~L
~L
~L ~L

~L
~L
~L

~L ~L
~L
~L ~L

~L ~L
~L~L

~L~L~L~L~L
~L~L~R

~R
~R
~R
~R ~R ~R

~R

~R

~R
~R ~R ~R ~R

~R ~R

~R
~R
~R~R~R~R~R~R

City block

Context-Window Size

N
A

P

(a) NAPi=45

2 4 6 8
7 · 10−2

0.10.1

0.2

0.25

A A A A A A A A

A

A
A

AAAA
A

A

AAAAAAA

L
L

L L L

L
L

L

L

L
L

L L L
L L

L

LLLLLLL

R R R R R R R R

RR
RRRRRR

RRRRRRRR~A ~A ~A ~A ~A ~A ~A ~A
~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A

~L

~L ~L

~L ~L ~L ~L ~L

~L

~L

~L

~L ~L
~L
~L
~L~L

~L

~L
~L~L
~L~L
~L

~R ~R ~R ~R ~R ~R ~R ~R

~R ~R ~R ~R ~R ~R ~R ~R
~R~R~R~R~R~R~R~R

Cosine

2 4 6 8
A A A A A A AAAAAAAAAAAL L L L L L L LL L L L L L L LLLLLLLLL

R R R R R R R RR R~A ~A ~A ~A ~A ~A ~A ~A~A~A
~L ~L ~L ~L ~L ~L ~L ~L~L ~L ~L ~L ~L ~L ~L ~L

~L

~L
~L~L~L~L~L~L~R ~R ~R ~R ~R ~R ~R ~R~R~R

Euclid

2 4 6 8
A

A A A A A A A
AAAAAAAAAAAAAAAA
L L L L L L L LL L L L L L L L

L

LLLLLLLR R
R R R R R R

RRRRRRRRRRRR~A~A~A~A ~A
~L ~L ~L ~L ~L ~L ~L ~L~L ~L ~L ~L ~L ~L ~L ~L

~L
~L~L~L~L~L~L~L~R~R

City block

Context-Window Size

(b) NAPi=2261

Figure 5.26: The method’s performance over {T}c-value
Enlarged for identifying terms in the category of

cell line.
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call points of 2% and 100%. Figures 5.27 and 5.28 show the results over the {T}c-value
ideal

and {T}c-value
Enlarged, respectively. Similarly, the computed MAP over {T}YATEA

YATEA and {T}YATEA
Enlarged are,

respectively, plotted in Figures 5.29 and 5.30. In these figures, the baselines are the aver-
age of the performances obtained when using the c-value and YATEA based rankings for
extracting the aforementioned categories of terms. For example, if the set of annotated
terms in the GENIA corpus that are ranked by the c-value measure (i.e., {T}c-value

ideal ), the
computed NAPi at 2% for the three categories of protein, cell line, and cell type are 0.37,
0.14, and 0.25, respectively. The mean average baseline is thus the sum of these numbers
divided by three, which is ≈ 0.25 as reported in Figures 5.27a and 5.28a.

A series of discussions can follow the comparison of the plotted results in Fig-
ures 5.27, 5.28, 5.29, and 5.30, similar to the approach employed in the previous sections.
Evidently, depending on factors such as the targeted recall point and the characteristics of
the corpus, the method’s parameters can be tuned differently to obtain the best-averaged
performances.

5.5 Discussion

In Section 5.4, the use of the proposed distributional method for finding co-hyponym
terms using a memory-based classification technique is investigated through a set of em-
pirical experiments. Firstly, the results from these experiments allow one to accept the
proposed hypothesis—that is, terms from a similar category of concepts appear in sim-
ilar context, and that can be used for developing a distributional method for identifying
co-hyponym terms. It is shown that with a small number of annotated reference terms
(i.e., |Rs| = 100) and in the absence of sufficient training data for developing an entity
tagger (i.e., as shown in Section 5.4.1.1), automatically constructed vector space models
with reduced dimensionality can be used to address the proposed task with an acceptable
performance (i.e., well above a general term recognition baseline, an entity tagger, and a
random baseline). The result is satisfactory, particularly when the little amount of manual
effort for developing a model is taken into consideration.

To address research questions proposed in Chapter 1 (Section 1.4), experiments
are designed and carried out over the Cartesian product of a set of values for configuring
the parameters of the context-widow (i.e., to address RQ 1.1, 1.2, and 1.3) and the clas-
sification framework (i.e., RQ 2.1 and 2.2). To cover the remaining research questions,
these experiments are repeated over several sets of candidate terms, and in corpora of two
different sizes (i.e., to investigate RQ 3), in order to extract terms from various categories
of concepts (i.e., in pursuing RQ 4). The non-interpolated average precisions at two recall
points (2% and 100%) are reported as the figure of merit.

To address research questions about the configuration of context-windows, sev-
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Figure 5.27: The mean average performance (i.e., y-axis) across concept categories observed in
experiments over {T}c-value

ideal using |Rs| = 100. The presentation format is similar to Figure 5.8:
the letters show the direction in which the context-window is extended to collected co-occurrence
frequency; their size (colour) denote the value of k; and the presence of ~� on top of them indicates
encoding information about the word order information.
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Figure 5.28: The mean average performance across concept categories observed in experiments
over {T}c-value

Enlarged using |Rs| = 100.
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Figure 5.29: The mean average performance across concept categories observed in experiments
over {T}YATEA

YATEA using |Rs| = 100. At 100% recall, if the city block distance is employed to compute
similarities, the method underperforms the computed baseline.
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Figure 5.30: The mean average performance across concept categories observed in experiments
over {T}YATEA

Enlarged using |Rs| = 100. Similar to Figure 5.29, at 100% recall, the use of city block
distance results in performances below the baseline.
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eral models are constructed when the context-windows are extended to three different
directions: only to the left, only to the right, and in both directions around the candidate
terms (see RQ 1.1); with variable sizes of 1 ≤ t ≤ 8 tokens (see RQ 1.2); and when
the sequential order of words in the context-windows are encoded and neglected (see
RQ 1.3). Hence, 48 different models are constructed for each set of candidate terms and
each corpus employed in the experiments. To address questions about the parameters of
the similarity-based reasoning framework, the weighting process is carried out using three
similarity metrics: the city block distance, the cosine measure, and the Euclidean distance
(see RQ 2.1). This is done for three different values of the neighbourhood size k (see
RQ 2.2)—therefore, the categorisation process is repeated for k ∈ 1, 7, 25.

In Section 5.4.1, the experiments begin with the evaluation of the method for
identifying terms from the category of proteins in the constructed terminological resource
from the GENIA corpus and using this corpus for collecting the co-occurrence frequencies
(i.e., {T}c-value

ideal , which is free from invalid candidate terms). Accordingly, the method’s
performances are obtained when it is configured using the aforementioned values for its
parameters. In Section 5.4.2, the experiments are repeated in the same corpus, however,
using a set of candidate terms that are extracted using a state-of-the-art term extractor
system (i.e., {T}YATEA

YATEA , which contains invalid candidate terms).1 In experiments that are
performed over both {T}c-value

ideal and {T}YATEA
YATEA , it is observed that choosing the best performing

configuration is largely dependant on the recall value that is targeted.
While it is not possible to choose a one best value for the size of context-windows,

it is verified that extending the context-windows to more than 5 tokens does not improve
the computed performances, particularly for large recall values. With respect to the dir-
ection in which context-windows are extended to collect co-occurrences, the conclusion
is similar: depending on the employed similarity metric and the targeted recall value,
the best performing models are constructed when they are stretched in different direc-
tions. However, more than often, context-windows extended to the left of candidate terms
outperform context-windows that are stretched in the other directions. However, in exper-
iments over {T}YATEA

YATEA , specially when using the cosine measure, the context-windows that
extend around the candidate terms can outperform those that extend only to the left. As
discussed in Section 5.4.2, one explanation for this observation is that invalid terms in
{T}YATEA

YATEA often contain valid terms that appear nested at one side of invalid terms.
A similar conclusion can be drawn for deciding upon the inclusion of information

about the order of words in context-windows. It is shown that word order information does
not necessarily enhance the observed performances (see Figures 5.9b and 5.18). Distance
metrics are understood to respond differently to the inclusion of word order information
(i.e., if this information improves the performance when using one of them, it does not
necessarily enhance the result when using the other one). Apart from the employed metric
for similarity measurement and the configuration of context-windows, the results show

1See Table 5.4.
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that the targeted recall value is an important factor when deciding on the inclusion of
word order information. For small recall values, in many experiments, context-windows
that encode information about the order of words are among the top performers.

The discussion about the parameters of the classification framework (see RQ 2.1
as well as RQ 2.2) is comparable to the discussion about the configuration of context-
windows in the sense that the targeted recall value plays an important role in choosing
the best performing configuration. In general, for small recall values—and, when the
number of extracted terms is not much larger than |Rs|—the Euclidean and the city block
distance metrics perform better than the cosine measure. However, the performance of
similarity measures that are based on the distance metrics drops abruptly for large recall
values. The cosine measure thus seems to be a preferable choice in the majority of ap-
plications. Particularly, the cosine measure seems to have a more stable behaviour in the
sense that a higher correlation between the observed results is obtained when the set of
candidate terms are altered (i.e., when the performances obtained in {T}c-value

ideal and {T}YATEA
YATEA

are compared). Concerning the neighbourhood selection value (i.e., k), in the majority of
the experiments and on average, a large value (i.e., k = 25) shows a better performance
than a small value such as k = 1, or 7. However, when using the cosine measure and for
small recall values, a small value of k can result in a higher performance than a large k.

In order to investigate the effect of the corpus size in the method’s performance
(see RQ 3), the experiments are continued by fetching additional text and enlarging the
GENIA corpus from half a million to 55 million tokens. In turn, as reported in Sec-
tion 5.4.3, the interplay between the size of the corpus that is used for the construction of
the models, the configuration of context-windows (i.e., the way co-occurrence frequencies
are collected), and the metrics that are employed to measure similarity between vectors is
investigated.

The experiments show that increasing the size of the input corpus for collect-
ing co-occurrence frequencies can improve the performance of the method if a suitable
configuration of context-windows and classification parameters (particularly, similarity
metric) are employed. It is observed that the top performer parameters in the original cor-
pus of a small size are not necessarily the top performers when the corpus size increases.
In addition, it is noticed that choosing the best performing parameters largely depends
on the criteria set for the performance assessment. For instance, the city block distance
showed a poor performance when the method is assessed at 100% recall. However, at a
small recall point, the city block showed a superior performance. These observations can
perhaps justify a number of contradictory reports in literature on the effect of the corpus
size in the performance of distributional models.

On average, compared to the Euclidean and the city block distance, cosine showed
a better performance and a more positive and stable response to an increases in the size of
the input corpus. This result can be expected intuitively, since cosine shows the degree of
commonality between the elements of two vectors. One can suspect that frequency norm-
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alisation and smoothing can enhance the results when using the Euclidean distance. How-
ever, an initial experiment to investigate this mater has resulted in even poorer results.1

The entries of specialized vocabularies are rare and less frequent than general vocabular-
ies. For example, a handful of terms in the GENIA corpus (e.g., the term physiologic cell
lineage) are so rare that they have appeared only once in the enlarged corpus. Hence, en-
larging the corpus will not change the collected co-occurrence frequencies for a relatively
large number of terms (see Figure 5.13).

Lastly, to investigate the method’s performance across categories of concepts (see
RQ 4), the evaluation of the method is extended to a few categories of co-hyponym terms
in the GENIA corpus. In Section 5.4.4, it is shown that despite similarities in the con-
figurations of the method that give the best performances for identifying terms in each
category (e.g., as shown in Figures 5.23, 5.24, 5.25, and 5.26, using context-windows that
extend to the left of candidate terms and the cosine measure for computing similarities
often results in the best observed performances), suggesting that it is not possible to re-
commend a one best configuration for context-windows and the classification parameters
across all the categories.

This observation can be utilised when a clustering technique (e.g., as proposed
in Dupuch et al., 2014) is employed for identifying co-hyponym terms. The aforemen-
tioned observation—that is, the performance of the method, particularly, with respect
to the configuration of context-windows is different from one co-hyponym category to
another—is often overlooked in these clustering tasks. That is to say, one single con-
figuration of context-windows for collecting co-occurrence frequencies is employed to
construct a single model and to perform the clustering process. Using several models in
parallel that are constructed by collecting co-occurrences from context-windows of differ-
ent configurations could, perhaps, enhance the performance of these techniques. If this is
not feasible (e.g., due to the lack of computational resources), then a model can be chosen
by averaging the performances across categories of concepts, such as the one proposed in
Section 5.4.5.

5.6 Improving the Performance for Large Recall Values

Tuning the evaluated parameters of the proposed method enhances the observed perform-
ances, particularly for small recall values. However, with the settings employed for its
evaluation in the previous sections (particularly, using |Rs| = 100), the method suffers
from a low performance (precision) when a large recall value (e.g., 100%) is desirable.
This problem can be solved by additional reference vectors (i.e., training samples) and
enlarging the size of Rs, for example, as reported in our experiments in Zadeh and Hand-
schuh (2014c).

1The results from these experiments are thus not reported in details.
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Figure 5.31: Bootstrap learning: the observed non-interpolated precision (NAP) for four iterations
in the performed experiment: (a) plots the observed NAP (i.e., y-axis) over the complete range
of recall values (i.e., x-axis); (b) and (c) provide minute details. In each iteration, NAP improves
slightly.

In the suggested method, the use of the example-based learning technique allows
the addition of training instances and enlarging the Rs during the life cycle of the proposed
system. Hence, in some applications, Rs can be extended manually, for example, through
iterative interactions between the user and the system. Whereas this can be a reasonable
solution in a number of use cases, it still may not be favourable in some situations. In this
case, an alternative solution is the use of the bootstrap learning methodology.

In the bootstrap learning technique, the available annotated data (i.e., Rs) is used
to train a classifier, and to label some of the unlabelled data. The resulting labelled data
is then employed to extend the available training dataset, to develop a new model, and
to label additional unlabelled data. This process is often repeated several times un-
til no improvements are observed. In the context of natural language processing, this
methodology is often known as the Yarowsky algorithm (Yarowsky, 1995). Despite er-
rors that are inevitable due to the automatic expansion of the training data, which may
limit the performance of this methodology (e.g., as addressed in McIntosh and Curran,
2009),1 the Yarowsky algorithm has been applied successfully to many information ex-
traction problems.

In the proposed co-hyponym identification task, the Yarowsky algorithm can be

1Often known as the problem of concept drifting, or semantic drifting.
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employed to resolve the problem of low performance at large recall points. Originally,
Yarowsky proposed his unsupervised learning algorithm for word sense disambiguation
based on the observation that words often express only one major sense in a given dis-
course or document. As stated earlier, in special corpora, the proportion of polysemous
terms is very low (e.g., 4% in the GENIA corpus vs. 17% in WordNet). Evidently, for
the proposed co-hyponym term extraction task, the prerequisite condition for a successful
application of the Yarowsky algorithm is met.

Whereas the study of this algorithm is well beyond the scope of this thesis (e.g.,
see discussions in Abney, 2004, for an in-depth understanding of the important parameters
in the Yarowsky algorithm), as a proof of concept, the observed results from a limited
experiment, which is performed over the {T}YATEA

YATEA , are reported. In this experiment, for
a particular configuration of context-windows (i.e., using context-windows of size three
tokens that are extended to the left of candidate terms ), and classification parameters
(i.e., using the cosine similarity and the k = 25), the classification process is repeated for
several iterations. In each iteration, after ranking the candidate terms by their assigned
weight in that iteration, the top five candidate terms are added as positive examples to
Rs. Figure 5.31 shows the observed results in the first four iterations. As shown, in each
iteration, the performance of the method improves slightly.

5.7 Summary

In this chapter, the main method for identifying co-hyponym terms is proposed and eval-
uated. Terminological resources are often structured by organising terms into a number
of categories in the domain of expertise that they represent. In Section 5.1, it is described
that terms that are placed under each category of concepts are in a co-hyponymy rela-
tionship, which can be modelled—linguistically—as a kind of paradigmatic relationship.
Consequently, it is explained that the principles of automatic term recognition (explained
in Chapter 3) and distributional semantics (described in Chapter 2) can be combined to
extract co-hyponym terms.

Section 5.2 details the method. After the extraction of candidate terms, they are
represented in vector space models that are constructed automatically by collecting their
co-occurrence frequencies with words appear in narrow context-windows in their vicin-
ity. Exploiting this method, however, is hindered by the high dimensionality of vector
spaces—that is, the curse of dimensionality problem (see also RQ 5). To tackle this prob-
lem, based on the principles introduced in Chapter 4, random projections are employed
for the incremental construction of vectors spaces with a reduced dimensionality. In turn,
in these vector space models, the task of identifying co-hyponym terms is accomplished
by using an example-based k-nearest neighbours learning framework and a small number
of annotated terms as reference vectors Rs, of which |Rs| = 100.

As discussed in Section 5.3.5, a number of factors play roles in the performance of
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the proposed method: (a) the configuration of context-windows for the collection of co-
occurrence frequencies; and, (b) setting the parameters of the learning framework—that
is, the neighbourhood size (k) selection and the employed metric for similarity meas-
urements. These parameters are evaluated systematically in Section 5.4. Apart from
the influence of these parameters on the performance of the method for identifying co-
hyponym terms, the method’s performance is studied with respect to (a) the presence of
noise (i.e., invalid terms) in the list of candidate terms (see Section 5.4.2), and (b) the
size of input corpus for collecting co-occurrence frequencies (i.e., enlarging the corpus
as described in Section 5.4.3). In Section 5.4.4, the reported experiments are followed
by investigating the method’s performance across concept categories. In Section 5.5, the
results observed in these experiments are discussed and linked to the research questions
proposed in Chapter 1.

Lastly, to improve the performance of the method when the extraction of co-
hyponym terms at large recall values is desirable, Section 5.6 suggests the use of a boot-
strap learning technique. It is proposed that an unsupervised learning method such as
the Yarowsky algorithm can be employed to enlarge Rs iteratively, and thus enhance the
observed performances across the complete range of recall values. To support the claim,
the results observed in a limited number of experiments are reported.
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Chapter 6

Conclusion and Future Work

This thesis began with an emphasis on the importance of the extraction of co-hyponym
terms—that is, terms that characterise a particular category of concepts in a knowledge
domain—for facilitating the process of knowledge acquisition from text. It is explained
how the principles of distributional semantics and automatic term extraction can be com-
bined to bridge the semantic gap, to decipher the meaning of terms, and to address the
task of extracting co-hyponym terms. Using random projections, vector space models
with reduced dimensionality are constructed to represent the distributional properties of
terms. In turn, an example-based learning framework is utilised to implement a similarity-
based reasoning mechanism in order to identify co-hyponym terms. This thesis details the
design and evaluation of the proposed methodology.

This chapter is divided into three sections. Section 6.1 restates the research con-
tributions. Section 6.2 discusses a number of open research questions, as well as a few
topics for future research. Finally, Section 6.3 concludes this thesis by a short summary.
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6.1 Research Contributions

6.1.1 The Proposed Method for Identifying Co-Hyponym Terms

The main contribution of this thesis is a new perspective of and a novel approach to the
identification of co-hyponym terms: a problem that has been so far overlooked in the
acquisition of knowledge from text. The proposed distributional representation of terms
in a vector space model and the use of similarity-based reasoning for deciphering their
meaning (see Section 5.1 and 5.2, Chapter 5) alleviate a number of concerns that arise
with respect to the flexibility and the user-friendliness of previously proposed techniques.

Categorisation in general, and, in particular term categorisation, is a major mech-
anism for organising knowledge and improving the performance of information systems.
Based on the specification of a proposed abstraction from a knowledge domain, concepts
(and thus terms) are organised in a taxonomy consisting of several co-hyponym groups—
each group containing a number of terms that share a type-of relationship with a common
general concept (i.e., a hypernym). The fluid nature of knowledge is inevitably reflected
by the changes in the way that the domain knowledge is abstracted, and, in turn, how
these co-hyponym terms are defined in a knowledge structure.

To maintain, and to embody this dynamic structure using tightly supervised tech-
niques—such as those employed in the development of entity extraction systems—is
labour-intensive, and thus, expensive. In contrast to these methods, the approach proposed
in this thesis is flexible and easy to maintain. In the proposed approach, the mechanism
employed for the representation of terms’ semantics (i.e., the vector space representa-
tion) is independent of the devised categorisation of terms. An update in the structure
of knowledge is applied by providing new examples of a newly emerged taxon. Neither
text annotation nor a training process is required for the development of a model (meta-
language) that captures the structure of terms. In addition, the suggested incremental
technique for the construction of a vector space model allows the model to be updated
at any time during its use—for example, new terms can be added and removed, and the
vectors that represent them can be updated independently of each other. Similarly, ex-
amples that are employed by the similarity-based reasoning framework can be updated
(new examples are added or removed, and the existing ones modified) at any time during
the model’s life cycle.

From the perspective of a user of such a system—perhaps, an expert in the know-
ledge domain, who may have minimal or no training in natural language processing—the
process of adapting an existing extraction system to a new task, domain, or even a new
class of terms is cumbersome. If a rule-based methodology is employed, new rules must
be devised; if a supervised learning technique is employed, a new model must be de-
veloped. In contrast, the proposed methodology is user-friendly and intuitive in the sense
that the user requires to provide only a few samples of what is, and perhaps what is not,
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desirable in a new category of terms. Coupled with the system’s flexibility in the manipu-
lation of vectors, feedback from the user can be easily incorporated into the system during
its life cycle.

Lastly, the proposed technique is scalable both vertically and horizontally. The
fixed dimension of vectors, which can be set and known prior to the extraction task, al-
lows one to implement the method for an effective exploitation of the computational re-
sources available to the system in a single node. This is particularly advantageous if GPU-
accelerated1 computing techniques are employed for similarity measurements. Needless
to say, the combination of random projections and example-based similarity reasoning
exploited in the proposed method suits parallel, distributed computing (e.g., using the
MapReduce programming paradigm) extremely well.

Additional novel characteristics of the method proposed for identifying co-hyponym
terms are listed in Section 1.2.

6.1.2 A Systematic Evaluation of the Proposed Method

A systematic evaluation of the method proposed in this thesis is carried out (see Sec-
tion 5.4 of Chapter 5). In the experiments performed (see Sections 5.3), the viability of
the proposed distributional hypothesis for identifying co-hyponym terms is verified.2

Several parameters that play a role in the performance of the proposed method
and the reciprocal relationship between these parameters are investigated (see Discussion
in Section 5.5). The discussion of the experiments in Chapter 5 focusses on finding the
best configuration of the parameters for the context-window (i.e., the way co-occurrence
frequencies are collected) and the parameters for the example-based learning method (i.e.,
similarity-based reasoning). The interdependence among these parameters, including the
figure of merit employed for assessing the performance of the method (i.e., precision at
small recall vs. large recall values), is also an important consideration. This is confirmed
by the method for reporting observations.

In the experiments described here, context-windows are configured differently
with respect to their size (i.e., the extent to which they stretch in the vicinity of candidate
terms), direction (i.e., left, right, or around the candidate terms), and encoding informa-
tion about the order of the words they contain. The example-based learning framework
is evaluated with respect to the measure employed for computing similarities (i.e., the
cosine measure, the Euclidean distance, and the city block distance) as well as the role
of neighbourhood size selection (i.e., the number of examples taken into consideration
during the weighting procedure). Moreover, the performance of the method is examined
under different conditions, namely in the absence and the presence of noise, for corpora
of different sizes, for several categories of concepts, and at both small and large recall

1That is, graphical processing units that are customised for linear algebra calculations.
2See also RQ 1 to 4.
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values. Despite a number of similarities in the results, no single best configuration could
be recommended for all the tasks (see Section 5.5). However, the following settings for
the parameters can be recommended:

• With respect to the size of the context-window (shown by t):

– often 2 ≤ t ≤ 4 is sufficient. However, if the corpus is small or the targeted co-
hyponym terms are infrequent, then a large t such as 4 ≤ t ≤ 6 could be a better
choice. This is particularly so if the set of candidate terms contains many invalid
terms and small recall values are intended. At the same time, choosing a large
value of t can introduce noise and thus decrease the performance, particularly if a
distance metric is employed for computing similarities.

• With respect to the direction in which the context-window is extended to collect
co-occurrences:

– if the size of the corpus and the intended recall value are small, and the set of
candidate terms contains many invalid terms, then context-windows that extend
around candidate terms are a better choice. Otherwise, context-windows that ex-
pand to the left of candidate terms to collect co-occurrences with their preceding
words are recommended.

• With respect to information about the sequential order of words in context-windows:

– encoding this information does not necessarily enhance performance. If the corpus
is large (or, the targeted co-hyponym terms are frequent), and the context-window
is extended to the left of candidate terms, encoding the word order information can
enhance the result by as much as 10%. It is observed that encoding this inform-
ation often improves the performance of the best performing models whereas it
diminishes the performance of other models.

• With respect to the selection of a similarity measure:

– a distance measure is, perhaps, a better choice if a small recall value is intended or
the intended recall is small in relation to the number of reference terms. However,
the cosine measure is an obligate choice if a large recall value is intended, or the
intended recall is very large in relation to the number of reference terms. Similarly,
if the set of candidate terms contains a large number of invalid terms that share a
common context with valid terms,1 then cosine is a better choice than a distance
metric.

• With respect to the neighbourhood size (k) selection in the k-nearest neighbours
framework:

1For instance, as suggested in Chapter 5, when valid terms appear nested in invalid terms (e.g., the
appearance of the valid term computational linguistics in invalid candidate terms such as in computational
linguistic studies, interesting computational linguistics, and so on).
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– if a small recall value is intended and cosine is employed for similarity measure-
ments, then the nearest neighbour can outperform other choices of k. Otherwise,
a large value of k is recommended. Particularly, if a distance metric is chosen, a
large k is a more reliable choice than a small one. In addition, when the corpus
becomes larger, a smaller value of k can be employed.

6.1.3 The Method for Incremental Construction of Vector Spaces

In this thesis, novel techniques for the incremental construction of vector spaces, par-
ticularly `1-normed spaces, are introduced (see Chapter 4). The proposed methods are
employed to obviate the curse of dimensionality problem. The mathematical theorems
behind the previously employed technique, known as the random indexing (RI) method,
is explained and ameliorated by a guideline for setting its parameters. It is shown that RI
is an incremental method for the construction of `2-normed spaces (i.e, Euclidean spaces),
which is based on the principle of sparse random projections.1

The aforementioned principles are employed to introduce the random Manhattan
indexing technique (RMI) and a variation of it named random Manhattan integer index-
ing (RMII). Both RMI and RMII implement random projections in `1-normed spaces
using projections of randomly created matrices with an asymptotic Cauchy distribution.
However, by a slight alteration in the distribution of the random projection matrices and
a new distance estimator, the RMII method avoids floating point arithmetics during the
construction of a vector space. This thesis employs proposed incremental vector space
construction techniques for identifying co-hyponym terms. These, however, can be also
used in many text analyses algorithms that employ vector space mathematics in general,
and in big text data analytics in particular.

Finally, by the help of the principles that are introduced to justify RI, RMI, and
RMII, a mathematical justification of a method known as the permutation technique is
provided (see Section 5.3.2.3.1, Chapter 5). The permutation technique is employed to
capture and to encode into a vector space model the sequential order of words in a text. In
this thesis, the previous intuitive justification of the permutation method is complemented
using the newly provided mathematical discussion in Chapter 4.

6.2 Open Questions and Future Work

From a very broad perspective, getting machines to understand natural languages, as they
are used by people to communicate with and to understand each other, has been, and
perhaps, will be one of the biggest research challenges for curious minds. What is obvious
is that language as an instrument of communication2 is a non-random complex system.

1See also RQ 5.
2Note that this is not necessarily an exclusive function of language, but one of many.
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However, distinguishing useful patterns in this system, and translating them into machine-
accessible semantics has remained an open research question.1 In addition to this kind
of question, the research presented in this thesis can be extended in several ways, as
described below.

6.2.1 Semantic Compositionality

In the context of distributional semantics, the compositionality of semantics and meaning
is currently receiving much attention (see Mitchell and Lapata, 2010, for an overview).
Apart from numerous research efforts (e.g., see Baroni et al., 2014a; Coecke et al., 2011),
many debates are also going on with respect to the limits and the theoretical foundations
of the compositionality of semantics (e.g., see Goldberg, 2015). In compositional distri-
butional semantics, research is focused on inferring the meanings of a linguistic entity
from its smaller parts—such as words from morphemes, and phrases and sentences from
words—using an algebraic structure (e.g., the vector space model studied and employed
in this thesis).

For instance, in a number of approaches, given a vector space model of word co-
occurrences and a finite number of mathematical operations such as adding, subtracting,
and so on, the goal is to answer whether it is possible to infer the meaning of a multiword
expression from the vectors of the words that construct the expression (e.g., see Kiela and
Clark, 2013). Evidently, this research overlaps with the study of the meanings of terms,
particularly complex2 terms. The semantic compositionality of terms is not dealt with in
the research presented here: Are terms, particularly complex terms, irreducible linguistic
units such as idioms? Or, do they show a degree of compositionality?

A systematic study of the aforementioned question is one way to extend the pro-
posed research in this thesis (e.g., by limiting the scope of the research proposed in Bald-
win et al., 2003, to terminology). As discussed in Chapter 5, complex terms are very
rare in special corpora; as a result, the collected co-occurrences in special corpora show
a very long-tail statistical distribution.3 If terms have compositional semantics, then the
proposed techniques in compositional distributional semantics can be also used to address
problems arising from a lack of data for collecting evidence that is required for establish-
ing the meaning of terms.

6.2.2 Term Space Models for Relations Other Than Co-Hyponymy

Term space models implemented in this thesis are employed and evaluated for identi-
fying co-hyponymy relationships between terms. However, these models can be used

1For example, will it be possible to find a comprehensive representation of text data other than the text
data itself that meets all the requirements for a system with natural language understanding capability?

2That is, multi-token.
3Longer than the distribution of the co-occurrences of words in general language corpora.
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to recognise relationships between terms other than co-hyponymy—for example, syn-
onymy,1 associative and relatedness relationships, etc. This is similar to the applications
of these methods in general language lexicography, which has been recently encouraged
for terminology, too (e.g., see Faber and L’Homme, 2014).2 If co-hyponymy relation-
ships between terms are employed to suggest an organisation of a specialised vocabulary,
then identifying compatible and incompatible co-hyponyms seems an interesting future
research.3

As briefly suggested in Chapter 1, the problem of is-a overload can be expected
in this context. Investigating methods address this problem is also an interesting future
research. The advantages of similarity-based reasoning offered by the term space method-
ology can be used as a complementary mechanism, not only to extract useful information
from text but also to facilitate logical inference mechanisms. There is an exciting poten-
tial for integrating existing (semi-)manually-built formal knowledge resources (e.g., the
open schemas and data contributed by the semantic Web research community) and distri-
butional semantic models to build a comprehensive system of reasoning (e.g., see Angeli
and Manning, 2014). To make this potential a reality, terminology—as a research discip-
line—could be the point of convergence for the systematic integration of these research
efforts. That is to say, the suggested perspective in terminology4 can provide a coherent
theoretical basis for rational integration of empiricist corpus-based distributional methods
and rationalist formal knowledge representation frameworks.

6.2.3 Extending the Scope of Evaluation

Extending evaluated context parameters and enhancing performance

This thesis evaluated the performance of the proposed method using the so-called flat
distributional models—that is, no linguistic information, such as part-of-speech categor-
ies, lemmatisation, or syntactic relationships are employed during the construction of the
models. Whereas constructing a flat model demands low computational power and scales
out easily, the use of linguistic information could enhance the performance.5 The evalu-
ation presented here can thus be extended by taking into account the linguistic properties
of context elements (i.e., the co-occurred words with candidate terms).

Moreover, context-windows are configured only for a few parameters. This can
be easily extended. In the evaluations performed in this thesis, those context-windows
that extend around terms are assumed to be symmetrical (e.g., 5 tokens to the left and
5 tokens to the right side of terms: that is, 5+5). However, these context-windows can
be extended asymmetrically (e.g., 5 tokens to the left and 1 tokens to the right side of

1That is, to address the term variation problem.
2See also Chapter 3.
3For example, to find disjoint classes in a domain ontology.
4Which goes beyond the interpretation of terms as labels for concepts; see Chapter 3.
5See also related discussion in Chapter 2.
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terms: that is, 5+1). The influence of extending context-windows asymmetrically in the
performance of the method can be thus studied in the future. Exclusion of words in
context-windows is also a possibility that can be investigated, too. For example, context-
windows do not require to be extended in the immediate vicinity of terms, but with an
offset of a few tokens (e.g., as suggested by Brown et al., 1992). This method for defining
context-windows can perhaps reduce noise resulted from errors in identifying candidate
terms.

Likewise, the evaluation can be extended by using various weighting mechanisms
other than the raw frequencies of words, and similarity measures other than cosine and
the `2 and the `1 distances. In this study, the evaluation is limited to the use of a fixed set
of reference vectors. Investigating methods for choosing the best representative reference
vectors would be another way to extend the reported evaluation. Although this question
has been investigated from the data analytics perspective (e.g., see Garcia et al., 2012), it
is interesting to explore linguistic characteristics of such instances.

As suggested in Chapter 5, bootstrap learning is a plausible solution for improving
the method’s performance when large recall values are intended; this is one of the limits
of the method. In this case, a number of new parameters are introduced. For example, the
way the set of reference vectors is extended and the way concept drifting is controlled.
This must be investigated together with other parameters of the method.

Evaluation across sublanguages and domains

The evaluation presented in this thesis is limited to the scientific sublanguage from of the
molecular biology domain (i.e., the GENIA corpus). Although our initial observations in a
sublanguage other than molecular biology (see Zadeh and Handschuh, 2014b,c) is similar
to the reported results here, further empirical investigations can be helpful to have a better
understanding of the method’s behaviour across sublanguages and to further demonstrate
its applicability across domains.

Qualitative study of the method’s output

The presented quantitative evaluation can be complemented by a qualitative evaluation.1

The method’s parameters for instance can be investigated with respect to the various char-
acteristics of terms they extract. For example, Weeds et al. (2004) study the frequency
characteristics of extracted words using different similarity measures. A similar approach
can be adopted for studying the method’s parameters and the effect of these parameters
on various aspects of the properties of the extracted terms (e.g., the frequency of terms,
their generality-specificity, etc.).

Not presented in the reported evaluations is the identification of co-hyponyms in
nested and hierarchical structures. For instance, the category of protein terms in the

1See the discussion on the evaluation of term extraction methods in Section 3.7 of Chapter 3.
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GENIA corpus is made of several sub-categories. The fine-grained identification of these
categories of concepts and their evaluation can be beneficial for a number of tasks. The
extracted set of co-hyponym terms using the proposed distributional model often consists
of entries that are synonyms, metonyms, and hypernyms (as suggested in the previous
sentence). Identifying these entries can enhance the quality of the generated set of co-
hyponym terms (e.g., similar to what is addressed by Weeds et al., 2014a, for words in a
general vocabulary).

Modelling additional elements of the communicative context

Last but not least, extending the evaluation parameters to additional elements of the com-
municative context is another interesting research quest. For example, extending a dis-
tributional model to learn from user interactions and integrating a model of behaviour in
the underlying distributional model1 is an interesting research with many practical ap-
plications. Whereas current research is focused mostly on the learning algorithms, the
distributional semantic framework allows for flexible expression of this type of informa-
tion in the knowledge base itself, instead of the learning (training) mechanism.

Diachronic investigation

In the presented study, the evaluation is limited to the extraction of co-hyponym terms at
a synchronic level. However, a diachronic analysis of term categories (as well as their
meanings), which has a number of important applications, such as trend analysis, re-
mains an open research area. The investigation of diachronic aspects of terminology in
particular, and in general adding a temporal dimension to distributional semantic models,
is certainly an exciting untouched research challenge. The lack of systematic studies in
such an important area is, perhaps, due to the lack of suitable language resources.

As reported in Zadeh and Handschuh (2014a), we are developing a language re-
source, named ACL RD-TEC, that can be used for investigating diachronic aspects of a
terminology. The ACL RD-TEC dataset consists of manually annotated terms from sci-
entific publications that are drawn from the ACL anthology reference corpus (ACL ARC).
The ACL ARC is a fixed set of 10,921 scientific publications in the domain of computa-
tional linguistics from 1965 to 2006 (Bird et al., 2008). Term annotations in ACL RD-TEC
can thus be mapped to this time-line in order to provide a benchmark for diachronic study
of terms and their meanings.

Investigating interaction with the domain conceptualisation

The conceptualisation of a domain defines the co-hyponym groups, which the method
proposed in this thesis identifies. This conceptualisation is dynamic and varies even from

1Other than, or in addition to, the manipulation of the set of reference terms (as is implied in Section 5.6
of chap. 5), such as the proposed solution for automatic spell checking in QasemiZadeh et al. (2006).
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one person to another, as discussed in Chapter 1. The conceived granularity of concepts
is especially important in the performance of the method (not only from the statistical
point of view, but also from the linguistic and knowledge engineering perspectives). The
presented evaluation does not answer questions that arise with respect to this factor. The
design of an evaluation framework that can assess this interaction is thus necessary (e.g.,
as suggested by Rindflesch and Fiszman, 2003).

6.2.4 Further Generalisation of Random Projections

Random projections are modern mathematical tools, which are still relatively unexplored,
both theoretically and empirically. This thesis proposed a new incremental technique for
constructing vector space models using random projections. The discussion about these
projections is limited to α-normed spaces, where α = 1, or 2. However, as suggested
in Chapter 4, the proposed methodology can be extended to α-normed spaces other than
α = 1, or 2. The application of these random projections in distributional semantics for
the construction of vector space models remains an untouched research avenue. Whether
these techniques are suitable for various text analytic applications, however, is an open
research question that must be addressed in future research and through experiments.

In this thesis, a single random projection is employed for the construction of vector
spaces. However, it is possible to combine random projections in different normed spaces
and in different ways. For example, instead of using a single random projection from
an n-dimensional to an m-dimensional space of which n � m, one can apply two differ-
ent random projections; a projection from the n-dimensional space to an m1-dimensional
space, and then from the m1-dimensional space to the m-dimensional space of which
n � m1 � m.1 Using this multi-stage projection allows the approximation of similarities
to be carried out in different normed space, if desirable. In addition, a trade-off between
the dimension of the projected spaces and the expected errors in the approximated sim-
ilarities can be considered,2 allowing for a more efficient computation of similarities and
perhaps enhancing the time complexity of a similarity-based reasoning process over big
text data—a similar rational as is employed in locality-sensitive hashing techniques and
space partitioning (e.g., see Datar et al., 2004; Dhesi and Kar, 2010).

6.3 Summary
To summarise, this thesis aimed at designing a framework for characterising the concep-
tual organisation of terms in a specialised vocabulary induced from a domain-specific
corpus. To meet this goal, the construction of distributional semantic models with fixed

1Note that the trending multi-layer neural networks (i.e., the so-called deep learning techniques) are
also based on the same mathematical principle.

2Since m1 � m, it is expected that the approximated distances in the m1-dimensional space are more
accurate than the m-dimensional space.
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reduced dimensionality using random projection techniques is studied. With the help of
a similarity-based reasoning mechanism, the application of these models to characterise
co-hyponymy relationships between terms is investigated.
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