ACL RD-TEC 1.0 Summarization of W06-2929
Paper Title:
VINE PARSING AND MINIMUM RISK RERANKING FOR SPEED AND PRECISION
VINE PARSING AND MINIMUM RISK RERANKING FOR SPEED AND PRECISION
Authors: Markus Dreyer and David A. Smith and Noah A. Smith
Primarily assigned technology terms:
- algorithm
- automaton
- computational linguistics
- computational natural language learning
- decoding
- dynamic programming
- dynamic programming algorithm
- error analysis
- factorization
- kernel
- labeler
- language learning
- learning
- learning methods
- likelihood estimate
- markov model
- maximum likelihood
- model selection
- natural language learning
- parser
- parsers
- parsing
- parsing algorithm
- preprocessing
- programming algorithm
- pruning
- reranking
- search
- statistical parsers
- subcategorization
- unlabeled parser
- unlabeled parsing
Other assigned terms:
- association for computational linguistics
- auxiliary verbs
- backoff
- case
- characters
- conditional independence
- conll-x
- corpora
- dependency length
- dependency trees
- error rate
- estimation
- feature
- feature sets
- governor
- grammar
- grammars
- head automaton grammar
- heuristics
- labeling
- lemma
- lemmata
- likelihood
- linguistics
- log-linear model
- markov models
- maximum likelihood estimate
- modifier
- mutual information
- natural language
- noun phrase
- noun phrases
- nouns
- oracle
- parse
- parsing model
- part-of-speech
- part-of-speech tag
- phrase
- precision
- preposition
- prepositional phrase
- prepositions
- probabilistic model
- probability
- probability model
- process
- relation
- runtime
- sentence
- sentences
- sparse data
- sparse data problem
- statistic
- subcategorization frames
- suffix
- suffixes
- symbol
- tags
- terms
- test data
- test set
- training
- training corpus
- training data
- tree
- trees
- unigram
- unlabeled dependency
- verb
- word
- word order