ACL RD-TEC 1.0 Summarization of W02-1005

Paper Title:
AUGMENTED MIXTURE MODELS FOR LEXICAL DISAMBIGUATION

Authors: Silviu Cucerzan and David Yarowsky

Other assigned terms:

  • adjective
  • ambiguity
  • analogy
  • approach
  • association for computational linguistics
  • basque
  • bayes decision rule
  • bayes model
  • bayesian model
  • binary features
  • binomial distribution
  • brown corpus
  • case
  • classification task
  • classification tasks
  • co-occurrences
  • coefficient
  • comparative study
  • conditional probabilities
  • conditional probability
  • context features
  • contextual features
  • correlation
  • data sets
  • decision rule
  • dictionary
  • dimensionality
  • disambiguation task
  • distribution
  • document
  • estimation
  • events
  • experimental results
  • extraction process
  • fact
  • feature
  • feature space
  • feature type
  • feature types
  • heuristic
  • implementation
  • keyword
  • knowledge
  • lemma
  • lexical ambiguity
  • lexical choice
  • likelihood
  • linguistics
  • measure
  • method
  • mixture models
  • model parameters
  • morphological variant
  • naive bayes model
  • named-entity
  • natural language
  • nouns
  • part-of-speech
  • part-ofspeech
  • pos-class
  • posterior
  • posterior distribution
  • posterior probability
  • predicate-argument
  • prior probability
  • probabilities
  • probability
  • probability distribution
  • probability distributions
  • probability estimates
  • procedure
  • process
  • regular expressions
  • sense inventory
  • senses of a word
  • sentence
  • sparse feature space
  • statistical model
  • statistics
  • syntactic features
  • syntactic functions
  • syntactic patterns
  • system evaluation
  • system performance
  • target word
  • technique
  • test data
  • test set
  • training
  • training and test data
  • training data
  • training set
  • transposition
  • typographical errors
  • verb
  • word
  • word sense
  • words

Extracted Section Types:


This page last edited on 10 May 2017.

*** ***